【计算机博后】美国哈佛大学招聘计算机科学博士后

【计算机博后】美国哈佛大学招聘计算机科学博士后

【海外招聘】美国哈佛大学招聘计算机科学博士后

2022年02月17日 11:40

www.zeeklog.com  - 【计算机博后】美国哈佛大学招聘计算机科学博士后

哈佛大学(Harvard University),简称“哈佛”,是一所私立研究型大学,常年荣居U.S. News世界大学排名世界第一,常春藤盟校、全球大学高研院联盟成员,坐落于美国马萨诸塞州波士顿都市区剑桥市。

哈佛大学是美国本土历史最悠久的高等学府,建立于1636年,最早由马萨诸塞州殖民地立法机关创建,初名“新市民学院”。为了纪念在成立初期给予学院慷慨支持的约翰·哈佛牧师,学校于1639年3月更名为“哈佛学院(Harvard College)”而1780年哈佛学院正式改称“哈佛大学(Harvard University)”。哈佛大学由十所学院以及一个高等研究所构成,坐拥世界上规模最大的大学图书馆系统。

Job Description
The Laboratory for Innovation Science at Harvard University (LISH) is accepting applications for a computer science postdoctoral fellow starting in 2022. Candidates with a background in one or more of the following areas are encouraged to apply: machine learning, explainable ML, adversarial ML, fairness and differential privacy, statistical learning theory, causal inference. Successful applicants will be strong technically as well as have a background or interest in real-world problems.

LISH is a Harvard-wide research program led by faculty co-directors Karim Lakhani and Marco Iansiti of Harvard Business School; Eva Guinan, Harvard Medical School; and David Parkes, Harvard School of Engineering and Applied Sciences. The lab works with several partners (NASA, Harvard Medical School, and various other institutions and corporations) to investigate real-world innovation problems. LISH is uniquely positioned to partner with the Harvard School of Engineering and Applied Sciences over the next five years, working both with faculty and companies tackling digital, data, and design problems.

The postdoctoral fellow will work with an interdisciplinary lab of social science researchers to investigate questions around the development and deployment of digital technology. They will apply and develop machine learning methodologies to questions of interest in economics and business. Fellows are encouraged to collaborate with statisticians and computer scientists around the university. Postdoctoral fellows in the past have worked with enterprises on problems related to pricing algorithms and matching.

The ideal candidate will have:
• Familiarity with methodological foundations, for example: algorithmic economics, matching markets, contest design, causal inference, data systems design, deep learning, experimental design, modeling of structured data, non-parametric Bayesian methods, scalable inference, statistical computation, and visualization.

• Demonstrably strong research skills, ideally with publications in top venues in machine learning, artificial intelligence, or sister conferences (e.g., ICML, NeurIPS, ICLR, KDD, AAAI, IJCAI, UAI, FAccT, AIES, AIStat, ACMEC, WINE), and/or top-tier interdisciplinary journals (e.g., Nature family of journals, PNAS, Science).

Depending on projects, the postdoctoral fellow will collaborate with one or more LISH faculty co-directors: Karim Lakhani, Eva Guinan, David Parkes, and Marco Iansiti, and/or other LISH-affiliated faculty including: Iavor Bojinov, Kris Ferreira, Hima Lakkaraju, Edward McFowland, and Seth Neel.

Basic Qualifications:
• A Ph.D. or equivalent degree in Computer Science or a closely related field (e.g., Statistics, Applied Mathematics, etc.). Please note: If you have obtained your Ph.D. in the past 12 months, you must be able to provide a certificate of completion from the degree-granting institution or a letter from your institution’s registrar stating all requirements for the degree have been successfully completed and to verify the date your degree was conferred.

Additional Qualifications:
• Strong programming skills and experience with machine learning and its applications.
• Strong team player with excellent communication skills.

Application Details:
Applications will be accepted until the position is filled. Please email the following [email protected] with the subject “Computer Science Postdoctoral Fellow”. All applications should include the following:

• Curriculum vitae
• Copy of academic records (unofficial records are acceptable)
• 2-page research statement
• Two research papers
• Contact details of at least two references

Candidates may be asked to undergo an assessment as part of the interview process.

Appointment Details:
This is a one-year term appointment through Harvard University with the possibility of renewal based on performance and funding. Relocation funding not provided.

Harvard is an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, sex, gender identity, sexual orientation, religion, creed, national origin, ancestry, age, protected veteran status, disability, genetic information, military service, pregnancy, and pregnancy-related conditions, or other protected status.

Read more

深入理解 Proxy 和 Object.defineProperty

在JavaScript中,对象是一种核心的数据结构,而对对象的操作也是开发中经常遇到的任务。在这个过程中,我们经常会使用到两个重要的特性:Proxy和Object.defineProperty。这两者都允许我们在对象上进行拦截和自定义操作,但它们在实现方式、应用场景和灵活性等方面存在一些显著的区别。本文将深入比较Proxy和Object.defineProperty,包括它们的基本概念、使用示例以及适用场景,以帮助读者更好地理解和运用这两个特性。 1. Object.defineProperty 1.1 基本概念 Object.defineProperty 是 ECMAScript 5 引入的一个方法,用于直接在对象上定义新属性或修改已有属性。它的基本语法如下: javascript 代码解读复制代码Object.defineProperty(obj, prop, descriptor); 其中,obj是目标对象,prop是要定义或修改的属性名,descriptor是一个描述符对象,用于定义属性的特性。 1.2 使用示例 javascript 代码解读复制代码//

By Ne0inhk

Proxy 和 Object.defineProperty 的区别

Proxy 和 Object.defineProperty 是 JavaScript 中两个不同的特性,它们的作用也不完全相同。 Object.defineProperty 允许你在一个对象上定义一个新属性或者修改一个已有属性。通过这个方法你可以精确地定义属性的特征,比如它是否可写、可枚举、可配置等。该方法的使用场景通常是需要在一个对象上创建一个属性,然后控制这个属性的行为。 Proxy 也可以用来代理一个对象,但是相比于 Object.defineProperty,它提供了更加强大的功能。使用 Proxy 可以截获并重定义对象的基本操作,比如访问属性、赋值、函数调用等等。在这些操作被执行之前,可以通过拦截器函数对这些操作进行拦截和修改。因此,通过 Proxy,你可以完全重写一个对象的默认行为。该方法的使用场景通常是需要对一个对象的行为进行定制化,或者需要在对象上添加额外的功能。 对比 以下是 Proxy 和 Object.defineProperty 的一些区别对比: 方面ProxyObject.defineProperty语法使用 new Proxy(target,

By Ne0inhk