【可能是全网最丝滑的LangChain教程】快速入门LLMChain

【可能是全网最丝滑的LangChain教程】快速入门LLMChain

使用LangChain构建应用

LangChain支持构建应用程序,将外部数据源和计算源连接到LLM。我们将从一个简单的 LLM 链开始,它只依赖于提示模板中的信息来响应。 接下来,我们将构建一个检索链,该链从单独的数据库获取数据并将其传递到提示模板中。 然后,我们将添加聊天记录,以创建对话检索链。这允许您以聊天方式与此 LLM 进行交互,因此它会记住以前的问题。 最后,我们将构建一个代理,利用 LLM 来确定它是否需要获取数据来回答问题。

LLMChain

LangChain可以通过 API 提供的模型(如 OpenAI)和本地开源模型(如 Ollama)等集成。开源模型的部署依赖于我们拥有的硬件配置,我将不做过多分析。

这里我将使用OpenAI提供的API做示例。

首先,我们需要导入 LangChain x OpenAI 集成包。

pip install langchain-openai

访问 API 需要一个 API 密钥,您可以通过创建一个帐户并前往来获取该密钥。

一旦我们有了密钥,我们就要通过运行以下命令将其设置为环境变量(非必须):

export OPENAI_API_KEY="..."

然后,我们可以初始化模型:

from langchain_openai import ChatOpenAI 
llm = ChatOpenAI()

如果您不想设置环境变量,则可以在启动 OpenAI LLM 类时直接通过命名参数传入密钥:openai_api_key

from langchain_openai import ChatOpenAI 
llm = ChatOpenAI(openai_api_key="...")

一旦你安装并初始化了你选择的LLM,我们就可以尝试使用它了!

让我们问它“请介绍一下李白?” 。

llm.invoke("介绍一下李白?")

输出如下:

AIMessage(content='李白(701年-762年),字太白,号青莲居士,唐朝时期伟大的浪漫主义诗人,被后人誉为“诗仙”。他出生于今天的陕西省凤翔县,自幼聪明好学,擅长诗词歌赋,一生创作了大量的诗歌,其作品风格豪放奔放,语言优美,富有想象力,具有极高的艺术价值。李白的诗歌题材广泛,包括山水田园、历史人物、神话传说、饮酒抒怀等,他的诗歌充满了浪漫主义色彩,表现出对自由、理想和自然的热爱。他的代表作有《静夜思》、《将进酒》、《庐山谣》、《早发白帝城》等,这些作品在中国文学史上占有重要地位。李白的一生充满了传奇色彩,他曾游历过许多地方,与当时的文人墨客交往甚广,他的诗歌也深受人们的喜爱。然而,他的生活并不平稳,曾多次遭遇政治挫折,但他始终保持乐观豁达的态度。晚年,李白因病返回故乡,最终在安徽当涂去世。李白的诗歌对中国文学产生了深远影响,他的作品被后世广为传颂,成为中国古代诗歌的瑰宝。 ')

我们还可以使用提示模板来指导它的响应。 提示模板用于将原始用户输入转换为更好的 LLM 输入。

from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([
    ("system", "你是世界级的历史人物研究人员,擅长用一句话输出回答。"),    
    ("user", "{input}")
])

现在,我们可以将它们组合成一个简单的 LLM 链:

chain = prompt | llm

我们现在可以调用它并提出相同的问题,理论上它应该输出一句介绍李白的话。

chain.invoke({"input": "请介绍一下李白?"})

输出:

AIMessage(content='李白,唐朝浪漫主义诗人,被誉为“诗仙”。 ')

模型的输出是一条消息。但是,使用字符串通常要方便得多。让我们添加一个简单的输出解析器,将聊天消息转换为字符串。

from langchain_core.output_parsers import StrOutputParser 
output_parser = StrOutputParser()

现在,我们可以将其添加到上一个链中:

chain = prompt | llm | output_parser

我们现在可以调用它并提出相同的问题。答案现在将是一个字符串(而不是 AIMessage)

输出:

李白,唐朝浪漫主义诗人,被誉为“诗仙”。 

总结

至此,我们就学会了LangChain中所谓的“Chain”的基本使用。既然是基本使用,肯定也有高级用法,甚至我们可以自己“自定义Chain”来处理我们逻辑。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

www.zeeklog.com  - 【可能是全网最丝滑的LangChain教程】快速入门LLMChain

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

www.zeeklog.com  - 【可能是全网最丝滑的LangChain教程】快速入门LLMChain

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

www.zeeklog.com  - 【可能是全网最丝滑的LangChain教程】快速入门LLMChain

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

www.zeeklog.com  - 【可能是全网最丝滑的LangChain教程】快速入门LLMChain
www.zeeklog.com  - 【可能是全网最丝滑的LangChain教程】快速入门LLMChain

四、AI大模型商业化落地方案

www.zeeklog.com  - 【可能是全网最丝滑的LangChain教程】快速入门LLMChain

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
  • L1.1 人工智能简述与大模型起源
  • L1.2 大模型与通用人工智能
  • L1.3 GPT模型的发展历程
  • L1.4 模型工程
    - L1.4.1 知识大模型
    - L1.4.2 生产大模型
    - L1.4.3 模型工程方法论
    - L1.4.4 模型工程实践
  • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
  • L2.1 API接口
    - L2.1.1 OpenAI API接口
    - L2.1.2 Python接口接入
    - L2.1.3 BOT工具类框架
    - L2.1.4 代码示例
  • L2.2 Prompt框架
    - L2.2.1 什么是Prompt
    - L2.2.2 Prompt框架应用现状
    - L2.2.3 基于GPTAS的Prompt框架
    - L2.2.4 Prompt框架与Thought
    - L2.2.5 Prompt框架与提示词
  • L2.3 流水线工程
    - L2.3.1 流水线工程的概念
    - L2.3.2 流水线工程的优点
    - L2.3.3 流水线工程的应用
  • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
  • L3.1 Agent模型框架
    - L3.1.1 Agent模型框架的设计理念
    - L3.1.2 Agent模型框架的核心组件
    - L3.1.3 Agent模型框架的实现细节
  • L3.2 MetaGPT
    - L3.2.1 MetaGPT的基本概念
    - L3.2.2 MetaGPT的工作原理
    - L3.2.3 MetaGPT的应用场景
  • L3.3 ChatGLM
    - L3.3.1 ChatGLM的特点
    - L3.3.2 ChatGLM的开发环境
    - L3.3.3 ChatGLM的使用示例
  • L3.4 LLAMA
    - L3.4.1 LLAMA的特点
    - L3.4.2 LLAMA的开发环境
    - L3.4.3 LLAMA的使用示例
  • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
  • L4.1 模型私有化部署概述
  • L4.2 模型私有化部署的关键技术
  • L4.3 模型私有化部署的实施步骤
  • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

www.zeeklog.com  - 【可能是全网最丝滑的LangChain教程】快速入门LLMChain

Read more

印度统治阶级锁死底层人的5大阳谋

印度统治阶级锁死底层人的5大阳谋

基于社会学和心理学视角: 1. 情感道德: 统治阶级通过塑造道德规范和情感价值观,引导底层人群的行为。例如,宣扬“勤劳致富”“忍耐美德”等观念,让底层人接受现状并自我约束。这种道德框架往往掩盖结构性不平等,使人们将个人困境归咎于自身而非系统。 2. 欲望控制: 通过消费主义和媒体宣传,统治阶级刺激底层人的物质与社会欲望(如名牌、地位),但同时设置经济壁垒,使这些欲望难以实现。底层人被困在追求“更好生活”的循环中,精力被分散,无法聚焦于挑战权力结构。 3. 情绪煽动: 利用恐惧、愤怒或民族主义等情绪,统治阶级可以通过媒体或公共事件转移底层人对社会问题的注意力。例如,制造外部敌人或内部对立(如阶层、种族矛盾),让底层人内耗而非联合反抗。 4. 暴利诱惑: 通过展示少数“成功案例”或快速致富的机会(如赌博、投机),诱导底层人追逐短期暴利。这种机制不仅让底层人陷入经济风险,还强化了对现有经济体系的依赖,削弱长期变革的可能性。 5. 权力震撼: 通过展示统治阶级的权力(

By Ne0inhk