Apache SparkSQL ScalaAPI 反射推断Schema

Apache SparkSQL ScalaAPI 反射推断Schema

准备数据

person.txt内容:

1 zhangsan 20
2 lisi 29
3 wangwu 25
4 zhaoliu 30
5 tianqi 35
6 kobe 40

反射推断Schema

示例代码:

package demo12

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}

object Test03 {

  case class Person(id:Int,name:String,age:Int)

  def main(args: Array[String]): Unit = {
    //1.创建SparkSession
    val spark: SparkSession = SparkSession.builder().master("local[*]").appName("SparkSQL").getOrCreate()
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("WARN")

    //2.读取文件
    val fileRDD: RDD[String] = sc.textFile("E:\\cache\\sparkCache\\20200409\\person.txt")
    val linesRDD: RDD[Array[String]] = fileRDD.map(_.split(" "))
    val rowRDD: RDD[Person] = linesRDD.map(line =>Person(line(0).toInt,line(1),line(2).toInt))

    //3.将RDD转成DF
    //注意:RDD中原本没有toDF方法,新版本中要给它增加一个方法,可以使用隐式转换
    import spark.implicits._


    //注意:上面的rowRDD的泛型是Person,里面包含了Schema信息
    //所以SparkSQL可以通过反射自动获取到并添加给DF
    val personDF: DataFrame = rowRDD.toDF


    personDF.show(10)
    personDF.printSchema()

    sc.stop()
    spark.stop()
  }
}

运行结果:

www.zeeklog.com  - Apache SparkSQL ScalaAPI 反射推断Schema