Apache SparkSQL ScalaAPI SQL与DSL
准备数据
person.txt内容:
1 zhangsan 20
2 lisi 29
3 wangwu 25
4 zhaoliu 30
5 tianqi 35
6 kobe 40
代码示例
package demo12
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}
object Test04 {
case class Person(id:Int,name:String,age:Int)
def main(args: Array[String]): Unit = {
//1.创建SparkSession
val spark: SparkSession = SparkSession.builder().master("local[*]").appName("SparkSQL").getOrCreate()
val sc: SparkContext = spark.sparkContext
sc.setLogLevel("WARN")
//2.读取文件
val fileRDD: RDD[String] = sc.textFile("E:\\cache\\sparkCache\\20200409\\person.txt")
val linesRDD: RDD[Array[String]] = fileRDD.map(_.split(" "))
val rowRDD: RDD[Person] = linesRDD.map(line =>Person(line(0).toInt,line(1),line(2).toInt))
//3.将RDD转成DF
//注意:RDD中原本没有toDF方法,新版本中要给它增加一个方法,可以使用隐式转换
import spark.implicits._
//注意:上面的rowRDD的泛型是Person,里面包含了Schema信息
//所以SparkSQL可以通过反射自动获取到并添加给DF
val personDF: DataFrame = rowRDD.toDF
personDF.show(10)
personDF.printSchema()
//=======================SQL方式查询=======================
//0.注册表
personDF.createOrReplaceTempView("t_person")
//1.查询所有数据
spark.sql("select * from t_person").show()
//2.查询age+1
spark.sql("select age,age+1 from t_person").show()
//3.查询age最大的两人
spark.sql("select name,age from t_person order by age desc limit 2").show()
//4.查询各个年龄的人数
spark.sql("select age,count(*) from t_person group by age").show()
//5.查询年龄大于30的
spark.sql("select * from t_person where age > 30").show()
//=======================DSL方式查询=======================
//1.查询所有数据
personDF.select("name","age")
//2.查询age+1
personDF.select($"name",$"age" + 1)
//3.查询age最大的两人
personDF.sort($"age".desc).show(2)
//4.查询各个年龄的人数
personDF.groupBy("age").count().show()
//5.查询年龄大于30的
personDF.filter($"age" > 30).show()
sc.stop()
spark.stop()
}
}