Apache SparkStreaming 整合kafka

Apache SparkStreaming 整合kafka
大家好,我是练习时长两年半的大数据练习生,喜欢数学,AI,大数据。
写博客是为了总结,分享,自娱自乐。希望写出的东西会对自己,对别人都有价值!
废话不多说,现在是个终身学习的时代,开始学习了!奥力给!干了兄弟们!
是时候展现真正的技术了:👇👇👇😋😋😋

文章目录

整合Kafka两种模式说明 Receiver & Direct

开发中我们经常会利用SparkStreaming实时地读取kafka中的数据然后进行处理
在spark1.3版本后,kafkaUtils里面提供了两种创建DStream的方法:

Receiver接收方式:
KafkaUtils.createDstream(开发中不用,了解即可,但是面试可能会问)

Receiver作为常驻的Task运行在Executor等待数据,但是一个Receiver效率低,需要开启多个,再手动合并数据(union),再进行处理,很麻烦

Receiver哪台机器挂了,可能会丢失数据,所以需要开启WAL(预写日志)保证数据安全,那么效率又会降低!

Receiver方式是通过zookeeper来连接kafka队列,调用Kafka高阶API,offset存储在zookeeper,由Receiver维护,spark在消费的时候为了保证数据不丢也会在Checkpoint中存一份offset,可能会出现数据不一致

所以不管从何种角度来说,Receiver模式都不适合在开发中使用了,已经淘汰了

Direct直连方式:
KafkaUtils.createDirectStream(开发中使用,要求掌握)

Direct方式是直接连接kafka分区来获取数据,从每个分区直接读取数据大大提高了并行能力

Direct方式调用Kafka低阶API(底层API),offset自己存储和维护,默认由Spark维护在checkpoint中,消除了与zk不一致的情况

当然也可以自己手动维护,把offset存在mysql、redis中

所以基于Direct模式可以在开发中使用,且借助Direct模式的特点+手动操作可以保证数据的Exactly once 精准一次

Receiver 与 Direct 对比:

Receiver接收方式

  • 多个Receiver接受数据效率高,但有丢失数据的风险。
  • 开启日志(WAL)可防止数据丢失,但写两遍数据效率低。
  • Zookeeper维护offset有重复消费数据可能。
  • 使用高层次的API

Direct直连方式

  • 不使用Receiver,直接到kafka分区中读取数据
  • 不使用日志(WAL)机制。
  • Spark自己维护offset
  • 使用低层次的API

消费数据实现方式对比

实现方式消息语义存在的问题
Receiverat most once
最多被处理一次
可能丢失数据
Receiver + WALat least once
最少被处理一次
不丢失数据,但是重复消费数据,且效率低
Direct + 手动操作exactly once
只被处理一次/精准一次
不丢失数据,不重复消费数据,且效率高

SparkStreaming集成kafka的版本问题

开发中SparkStreaming和kafka集成有两个版本:0.80.10+

  • 0.8版本有Receiver和Direct模式(但是0.8版本生产环境问题较多,在Spark2.3之后不支持0.8版本了)
  • 0.10以后只保留了direct模式(Reveiver模式不适合生产环境),并且0.10版本API有变化(更加强大)

下图是官网宣布不支持0.8版本的图片

www.zeeklog.com  - Apache SparkStreaming 整合kafka


学习和开发直接使用0.10版本中的direct模式,但是关于Receiver和Direct的区别要知道

spark-streaming-kafka-0.8版本

Receiver

KafkaUtils.createDstream使用了receivers来接收数据,利用的是Kafka高层次的消费者api,偏移量由Receiver维护在zk中,对于所有的receivers接收到的数据将会保存在Spark executors中,然后通过Spark Streaming启动job来处理这些数据,有丢失数据的风险,可启用WAL日志,它同步将接受到数据保存到分布式文件系统上比如HDFS。保证数据在出错的情况下可以恢复出来。尽管这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是启用了WAL效率会较低,且可能造成数据重复消费。因为Spark和ZooKeeper之间可能是不同步的。

官方现在已经不推荐这种整合方式

www.zeeklog.com  - Apache SparkStreaming 整合kafka

0.8版本代码测试

1.启动zookeeper集群

zkServer.sh start

2.启动kafka集群

kafka-server-start.sh  /export/servers/kafka/config/server.properties

3.创建topic

kafka-topics.sh --create --zookeeper hadoop01:2181 --replication-factor 1 --partitions 3 --topic spark_kafka

4.通过shell命令向topic发送消息

kafka-console-producer.sh --broker-list hadoop01:9092 --topic  spark_kafka
hadoop spark sqoop hadoop spark hive hadoop

5.添加kafka的pom依赖

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
    <version>2.2.0</version>
</dependency>

API

通过receiver接收器获取kafka中topic数据,可以并行运行更多的接收器读取kafak topic中的数据,这里为3个

val receiverDStream: immutable.IndexedSeq[ReceiverInputDStream[(String, String)]] = (1 to 3).map(x => {
  val stream: ReceiverInputDStream[(String, String)] = KafkaUtils.createStream(ssc, zkQuorum, groupId, topics)
})

stream如果启用了WAL(spark.streaming.receiver.writeAheadLog.enable=true)可以设置存储级别
(默认StorageLevel.MEMORY_AND_DISK_SER_2)

代码演示

package cn.itcast.streaming

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.immutable

object SparkKafka {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    val config: SparkConf = 
new SparkConf().setAppName("SparkStream").setMaster("local[*]")
      .set("spark.streaming.receiver.writeAheadLog.enable", "true")
//开启WAL预写日志,保证数据源端可靠性
    val sc = new SparkContext(config)
    sc.setLogLevel("WARN")
    val ssc = new StreamingContext(sc,Seconds(5))
    ssc.checkpoint("./kafka")
//==============================================
    //2.准备配置参数
    val zkQuorum = "node01:2181,node02:2181,node03:2181"
    val groupId = "spark"
    val topics = Map("spark_kafka" -> 2)//2表示每一个topic对应分区都采用2个线程去消费,
//ssc的rdd分区和kafka的topic分区不一样,增加消费线程数,并不增加spark的并行处理数据数量
    //3.通过receiver接收器获取kafka中topic数据,可以并行运行更多的接收器读取kafak topic中的数据,这里为3个
    val receiverDStream: immutable.IndexedSeq[ReceiverInputDStream[(String, String)]] = (1 to 3).map(x => {
      val stream: ReceiverInputDStream[(String, String)] = KafkaUtils.createStream(ssc, zkQuorum, groupId, topics)
      stream
    })
    //4.使用union方法,将所有receiver接受器产生的Dstream进行合并
    val allDStream: DStream[(String, String)] = ssc.union(receiverDStream)
    //5.获取topic的数据(String, String) 第1个String表示topic的名称,第2个String表示topic的数据
    val data: DStream[String] = allDStream.map(_._2)
//==============================================
    //6.WordCount
    val words: DStream[String] = data.flatMap(_.split(" "))
    val wordAndOne: DStream[(String, Int)] = words.map((_, 1))
    val result: DStream[(String, Int)] = wordAndOne.reduceByKey(_ + _)
    result.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

Direct

Direct方式会定期地从kafka的topic下对应的partition中查询最新的偏移量,再根据偏移量范围在每个batch里面处理数据,Spark通过调用kafka简单的消费者API读取一定范围的数据。

www.zeeklog.com  - Apache SparkStreaming 整合kafka

Direct的缺点是无法使用基于zookeeper的kafka监控工具
Direct相比基于Receiver方式有几个优点:

  • 简化并行

不需要创建多个kafka输入流,然后union它们,sparkStreaming将会创建和kafka分区数一样的rdd的分区数,而且会从kafka中并行读取数据,spark中RDD的分区数和kafka中的分区数据是一一对应的关系。

  • 高效

Receiver实现数据的零丢失是将数据预先保存在WAL中,会复制一遍数据,会导致数据被拷贝两次,第一次是被kafka复制,另一次是写到WAL中。而Direct不使用WAL消除了这个问题。

  • 恰好一次语义(Exactly-once-semantics)

Receiver读取kafka数据是通过kafka高层次api把偏移量写入zookeeper中,虽然这种方法可以通过数据保存在WAL中保证数据不丢失,但是可能会因为sparkStreaming和ZK中保存的偏移量不一致而导致数据被消费了多次。
Direct的Exactly-once-semantics(EOS)通过实现kafka低层次api,偏移量仅仅被ssc保存在checkpoint中,消除了zk和ssc偏移量不一致的问题。

  • API
KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)

代码演示

package cn.itcast.streaming

import kafka.serializer.StringDecoder
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}


object SparkKafka2 {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    val config: SparkConf = 
new SparkConf().setAppName("SparkStream").setMaster("local[*]")
    val sc = new SparkContext(config)
    sc.setLogLevel("WARN")
    val ssc = new StreamingContext(sc,Seconds(5))
    ssc.checkpoint("./kafka")
    //==============================================
    //2.准备配置参数
    val kafkaParams = Map("metadata.broker.list" -> "node01:9092,node02:9092,node03:9092", "group.id" -> "spark")
    val topics = Set("spark_kafka")
    val allDStream: InputDStream[(String, String)] = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
    //3.获取topic的数据
    val data: DStream[String] = allDStream.map(_._2)
    //==============================================
    //WordCount
    val words: DStream[String] = data.flatMap(_.split(" "))
    val wordAndOne: DStream[(String, Int)] = words.map((_, 1))
    val result: DStream[(String, Int)] = wordAndOne.reduceByKey(_ + _)
    result.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

spark-streaming-kafka-0.10版本

●说明
spark-streaming-kafka-0-10版本中,API有一定的变化,操作更加灵活,开发中使用

●pom.xml

<!--<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
    <version>${spark.version}</version>
</dependency>-->
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
    <version>${spark.version}</version>
</dependency>

API

创建topic

/export/servers/kafka/bin/kafka-topics.sh --create --zookeeper node01:2181 --replication-factor 3 --partitions 3 --topic spark_kafka

启动生产者

/export/servers/kafka/bin/kafka-console-producer.sh --broker-list node01:9092,node01:9092,node01:9092 --topic spark_kafka

代码演示

package cn.itcast.streaming

import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

object SparkKafkaDemo {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    //spark.master should be set as local[n], n > 1
    val conf = new SparkConf().setAppName("wc").setMaster("local[*]")
    val sc = new SparkContext(conf)3
    sc.setLogLevel("WARN")
    val ssc = new StreamingContext(sc,Seconds(5))//5表示5秒中对数据进行切分形成一个RDD
    //准备连接Kafka的参数
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "node01:9092,node02:9092,node03:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "SparkKafkaDemo",
      //earliest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从头开始消费
      //latest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产生的该分区下的数据
      //none:topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常
      //这里配置latest自动重置偏移量为最新的偏移量,即如果有偏移量从偏移量位置开始消费,没有偏移量从新来的数据开始消费
      "auto.offset.reset" -> "latest",
      //false表示关闭自动提交.由spark帮你提交到Checkpoint或程序员手动维护
      "enable.auto.commit" -> (false: java.lang.Boolean)
    )
    val topics = Array("spark_kafka")
    //2.使用KafkaUtil连接Kafak获取数据
    val recordDStream: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](ssc,
      LocationStrategies.PreferConsistent,//位置策略,源码强烈推荐使用该策略,会让Spark的Executor和Kafka的Broker均匀对应
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams))//消费策略,源码强烈推荐使用该策略
    //3.获取VALUE数据
    val lineDStream: DStream[String] = recordDStream.map(_.value())//_指的是ConsumerRecord
    val wrodDStream: DStream[String] = lineDStream.flatMap(_.split(" ")) //_指的是发过来的value,即一行数据
    val wordAndOneDStream: DStream[(String, Int)] = wrodDStream.map((_,1))
    val result: DStream[(String, Int)] = wordAndOneDStream.reduceByKey(_+_)
    result.print()
    ssc.start()//开启
    ssc.awaitTermination()//等待优雅停止
  }
}

Kafka手动维护偏移量

API

启动生产者

/export/servers/kafka/bin/kafka-console-producer.sh --broker-list node01:9092,node01:9092,node01:9092 --topic spark_kafka

代码演示

package cn.itcast.streaming

import java.sql.{DriverManager, ResultSet}

import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{OffsetRange, _}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection.mutable

object SparkKafkaDemo2 {
  def main(args: Array[String]): Unit = {
    //1.创建StreamingContext
    //spark.master should be set as local[n], n > 1
    val conf = new SparkConf().setAppName("wc").setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")
    val ssc = new StreamingContext(sc,Seconds(5))//5表示5秒中对数据进行切分形成一个RDD
    //准备连接Kafka的参数
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "node01:9092,node02:9092,node03:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "SparkKafkaDemo",
      "auto.offset.reset" -> "latest",
      "enable.auto.commit" -> (false: java.lang.Boolean)
    )
    val topics = Array("spark_kafka")
    //2.使用KafkaUtil连接Kafak获取数据
    //注意:
    //如果MySQL中没有记录offset,则直接连接,从latest开始消费
    //如果MySQL中有记录offset,则应该从该offset处开始消费
    val offsetMap: mutable.Map[TopicPartition, Long] = OffsetUtil.getOffsetMap("SparkKafkaDemo","spark_kafka")
    val recordDStream: InputDStream[ConsumerRecord[String, String]] = if(offsetMap.size > 0){//有记录offset
      println("MySQL中记录了offset,则从该offset处开始消费")
      KafkaUtils.createDirectStream[String, String](ssc,
      LocationStrategies.PreferConsistent,//位置策略,源码强烈推荐使用该策略,会让Spark的Executor和Kafka的Broker均匀对应
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams,offsetMap))//消费策略,源码强烈推荐使用该策略
    }else{//没有记录offset
      println("没有记录offset,则直接连接,从latest开始消费")
      // /export/servers/kafka/bin/kafka-console-producer.sh --broker-list node01:9092 --topic  spark_kafka
      KafkaUtils.createDirectStream[String, String](ssc,
      LocationStrategies.PreferConsistent,//位置策略,源码强烈推荐使用该策略,会让Spark的Executor和Kafka的Broker均匀对应
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams))//消费策略,源码强烈推荐使用该策略
    }
    //3.操作数据
    //注意:我们的目标是要自己手动维护偏移量,也就意味着,消费了一小批数据就应该提交一次offset
    //而这一小批数据在DStream的表现形式就是RDD,所以我们需要对DStream中的RDD进行操作
    //而对DStream中的RDD进行操作的API有transform(转换)和foreachRDD(动作)
    recordDStream.foreachRDD(rdd=>{
      if(rdd.count() > 0){//当前这一时间批次有数据
        rdd.foreach(record => println("接收到的Kafk发送过来的数据为:" + record))
        //接收到的Kafk发送过来的数据为:ConsumerRecord(topic = spark_kafka, partition = 1, offset = 6, CreateTime = 1565400670211, checksum = 1551891492, serialized key size = -1, serialized value size = 43, key = null, value = hadoop spark ...)
        //注意:通过打印接收到的消息可以看到,里面有我们需要维护的offset,和要处理的数据
        //接下来可以对数据进行处理....或者使用transform返回和之前一样处理
        //处理数据的代码写完了,就该维护offset了,那么为了方便我们对offset的维护/管理,spark提供了一个类,帮我们封装offset的数据
        val offsetRanges: Array[OffsetRange] = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
        for (o <- offsetRanges){
          println(s"topic=${o.topic},partition=${o.partition},fromOffset=${o.fromOffset},untilOffset=${o.untilOffset}")
        }
        //手动提交offset,默认提交到Checkpoint中
        //recordDStream.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
        //实际中偏移量可以提交到MySQL/Redis中
        OffsetUtil.saveOffsetRanges("SparkKafkaDemo",offsetRanges)
      }
    })

   /* val lineDStream: DStream[String] = recordDStream.map(_.value())//_指的是ConsumerRecord
    val wrodDStream: DStream[String] = lineDStream.flatMap(_.split(" ")) //_指的是发过来的value,即一行数据
    val wordAndOneDStream: DStream[(String, Int)] = wrodDStream.map((_,1))
    val result: DStream[(String, Int)] = wordAndOneDStream.reduceByKey(_+_)
    result.print()*/
    ssc.start()//开启
    ssc.awaitTermination()//等待优雅停止
  }

  /*
  手动维护offset的工具类
  首先在MySQL创建如下表
    CREATE TABLE `t_offset` (
      `topic` varchar(255) NOT NULL,
      `partition` int(11) NOT NULL,
      `groupid` varchar(255) NOT NULL,
      `offset` bigint(20) DEFAULT NULL,
      PRIMARY KEY (`topic`,`partition`,`groupid`)
    ) ENGINE=InnoDB DEFAULT CHARSET=utf8;
   */
  object OffsetUtil {

    //从数据库读取偏移量
    def getOffsetMap(groupid: String, topic: String) = {
      val connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata?characterEncoding=UTF-8", "root", "root")
      val pstmt = connection.prepareStatement("select * from t_offset where groupid=? and topic=?")
      pstmt.setString(1, groupid)
      pstmt.setString(2, topic)
      val rs: ResultSet = pstmt.executeQuery()
      val offsetMap = mutable.Map[TopicPartition, Long]()
      while (rs.next()) {
        offsetMap += new TopicPartition(rs.getString("topic"), rs.getInt("partition")) -> rs.getLong("offset")
      }
      rs.close()
      pstmt.close()
      connection.close()
      offsetMap
    }

    //将偏移量保存到数据库
    def saveOffsetRanges(groupid: String, offsetRange: Array[OffsetRange]) = {
      val connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata?characterEncoding=UTF-8", "root", "root")
      //replace into表示之前有就替换,没有就插入
      val pstmt = connection.prepareStatement("replace into t_offset (`topic`, `partition`, `groupid`, `offset`) values(?,?,?,?)")
      for (o <- offsetRange) {
        pstmt.setString(1, o.topic)
        pstmt.setInt(2, o.partition)
        pstmt.setString(3, groupid)
        pstmt.setLong(4, o.untilOffset)
        pstmt.executeUpdate()
      }
      pstmt.close()
      connection.close()
    }
  }
}

总结:SparkStreaming有哪几种方式消费Kafka中的数据,它们之间的区别是什么?

一、基于Receiver的方式

这种方式使用Receiver来获取数据。
Receiver是使用Kafka的高层次Consumer API来实现的。
receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的(如果突然数据暴增,大量batch堆积,很容易出现内存溢出的问题),然后Spark Streaming启动的job会去处理那些数据。

然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据。
如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的预写日志机制(Write Ahead Log,WAL)。
该机制会同步地将接收到的Kafka数据写入分布式文件系统(比如HDFS)上的预写日志中。所以,即使底层节点出现了失败,也可以使用预写日志中的数据进行恢复。

二、基于Direct的方式

这种新的不基于Receiver的直接方式,是在Spark 1.3中引入的,从而能够确保更加健壮的机制。
替代掉使用Receiver来接收数据后,这种方式会周期性地查询Kafka,来获得每个topic+partition的最新的offset,从而定义每个batch的offset的范围。
当处理数据的job启动时,就会使用Kafka的简单consumer api来获取Kafka指定offset范围的数据。

优点如下:

  • 简化并行读取

如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作。Spark会创建跟Kafka partition一样多的RDD partition,并且会并行从Kafka中读取数据。所以在Kafka partition和RDD partition之间,有一个一对一的映射关系。

  • 高性能

如果要保证零数据丢失,在基于receiver的方式中,需要开启WAL机制。这种方式其实效率低下,因为数据实际上被复制了两份,Kafka自己本身就有高可靠的机制,会对数据复制一份,而这里又会复制一份到WAL中。而基于direct的方式,不依赖Receiver,不需要开启WAL机制,只要Kafka中作了数据的复制,那么就可以通过Kafka的副本进行恢复。

  • 一次且仅一次的事务机制

三、对比:
基于receiver的方式,是使用Kafka的高阶API来在ZooKeeper中保存消费过的offset的。这是消费Kafka数据的传统方式。这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是却无法保证数据被处理一次且仅一次,可能会处理两次。因为Spark和ZooKeeper之间可能是不同步的。
基于direct的方式,使用kafka的简单api,Spark Streaming自己就负责追踪消费的offset,并保存在checkpoint中。Spark自己一定是同步的,因此可以保证数据是消费一次且仅消费一次。

在实际生产环境中大部分情况都用Direct方式

😆小伙伴们!相信看到这里的你一定有所收获!
😂如果我哪里写错欢迎评论区来喷😂😂😂
😘如果觉得对你有帮助请给个赞哦亲!🤞🤞🤞🤞🤞🤞
🤞🤞🤞最后引用名言一句:我们无论遇到什么困难,都不要怕,微笑着面对它!消除恐惧的最好办法就是面对恐惧!加油!奥力给!