初学者必备:一文读懂大语言模型(LLM)入门攻略!

初学者必备:一文读懂大语言模型(LLM)入门攻略!

当前2024年,LLM领域发展日新月异,很多新的实用技术层出不穷,个人认为要跟上LLM的发展,需要掌握以下内容,并需要不断地跟踪学习。

入门LLM前置基础

  • 深度学习基础知识:推荐李宏毅的深度学习课程
  • Python和numpy:推荐菜鸟教程
  • Pytorch框架的使用:推荐官方的60分钟教程

以上这些是敲门砖,默认已经掌握。

理论基础

  • Transformer:LLM基础组件,必需掌握
  • The Illustrated Transformer:图解Transformer,配合论文一起食用效果更佳
  • RoPE:当前大模型必备的位置编码
  • RMSNorm:LayerNorm的升级版(简化版),LLM最常用的归一化方法
  • GPT:GPT系列鼻祖论文
  • GPT2:Language Models are Unsupervised Multitask Learners
  • GPT-3:第一个千亿大模型,大力出奇迹
  • InstructGPT:ChatGPT前身
  • GPT4:OpenAI技术报告
  • LLama:最热门的开源LLM
  • LLama2:最热门的开源LLM,结合代码学习效果更好

掌握以上内容基本就能理解当前LLM的原理,对模型的计算过程有一个整体上的认识,就能知道为什么LLM的回答是一个接着一个输出的。

进阶知识

如果需要利用LLM完成应用或者对模型进行改进,就需要更加深入一点的了解。要掌握模型的训练推理过程,常见的加速方法以及前沿方向。

  • ZeROZeRO-Offload、ZeRO-Infinity:大模型训练微调最常用的DeepSpeed框架的基础
  • FlashAttention:现代LLM加速必备,白给的加速谁会不要?
  • PagedAttention:灵感来源于操作系统的LLM显存管理算法,把LLM显存开销打下来了
  • MQA、GQA:针对Attention模块的优化算法,多个Query共享Key和Value,加速推理
  • LoRA:低资源微调模型的方法,让没有A100的“科研平民”也能上手LLM微调的神器
  • MoE:混合专家模型,当前研究的热点,未来LLM的潜在新形态

实操教程

推荐以下三个项目:

nanoGPT:以GPT-2为Baseline,详细地介绍了LLM训练和推理的过程,代码简洁易懂,极适合入门实操。K神出品,必属精品

LLMs-from-scratch:一本正在连载中的书籍配套项目,从零开始教你如何实现并训练推理LLM,每一部分都有详细的notebook,可以单步执行,了解每一步模型都做了什么,把LLM拆开了揉碎了展现在你面前。

llama.cpp:一个没有第三方依赖的纯C++的高性能LLM推理框架,也能训练。支持当前大多数主流LLM,内容很丰富,上手使用也算简单。不过由于涉及底层优化,想要优化该项目的话需要一定的计算机底层知识,适合有一定经验的选手学习。

再推荐一本人大出版的大模型电子书籍《大语言模型》,详细介绍了语言模型的发展脉络和知识,不仅包含算法原理模型结构,还包含了数据处理和训练推理步骤讲解,甚至连代码都有中文注释,对新手友好。书中详细地介绍了LLM的训练、推理和评价阶段,训练阶段包含预训练、指令微调、偏好对齐等阶段步骤和数据处理,推理阶段介绍了解码算法、量化、蒸馏、剪枝等加速手段,评测部分介绍了常见的评测任务和指标,非常适合系统地入门学习LLM,这是我读过最适合新手的LLM书籍~

www.zeeklog.com  - 初学者必备:一文读懂大语言模型(LLM)入门攻略!

封面

www.zeeklog.com  - 初学者必备:一文读懂大语言模型(LLM)入门攻略!

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

www.zeeklog.com  - 初学者必备:一文读懂大语言模型(LLM)入门攻略!

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)

www.zeeklog.com  - 初学者必备:一文读懂大语言模型(LLM)入门攻略!

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

www.zeeklog.com  - 初学者必备:一文读懂大语言模型(LLM)入门攻略!


www.zeeklog.com  - 初学者必备:一文读懂大语言模型(LLM)入门攻略!

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

www.zeeklog.com  - 初学者必备:一文读懂大语言模型(LLM)入门攻略!

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

www.zeeklog.com  - 初学者必备:一文读懂大语言模型(LLM)入门攻略!

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)

www.zeeklog.com  - 初学者必备:一文读懂大语言模型(LLM)入门攻略!
www.zeeklog.com  - 初学者必备:一文读懂大语言模型(LLM)入门攻略!

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

www.zeeklog.com  - 初学者必备:一文读懂大语言模型(LLM)入门攻略!


👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

www.zeeklog.com  - 初学者必备:一文读懂大语言模型(LLM)入门攻略!

Read more

印度统治阶级锁死底层人的5大阳谋

印度统治阶级锁死底层人的5大阳谋

基于社会学和心理学视角: 1. 情感道德: 统治阶级通过塑造道德规范和情感价值观,引导底层人群的行为。例如,宣扬“勤劳致富”“忍耐美德”等观念,让底层人接受现状并自我约束。这种道德框架往往掩盖结构性不平等,使人们将个人困境归咎于自身而非系统。 2. 欲望控制: 通过消费主义和媒体宣传,统治阶级刺激底层人的物质与社会欲望(如名牌、地位),但同时设置经济壁垒,使这些欲望难以实现。底层人被困在追求“更好生活”的循环中,精力被分散,无法聚焦于挑战权力结构。 3. 情绪煽动: 利用恐惧、愤怒或民族主义等情绪,统治阶级可以通过媒体或公共事件转移底层人对社会问题的注意力。例如,制造外部敌人或内部对立(如阶层、种族矛盾),让底层人内耗而非联合反抗。 4. 暴利诱惑: 通过展示少数“成功案例”或快速致富的机会(如赌博、投机),诱导底层人追逐短期暴利。这种机制不仅让底层人陷入经济风险,还强化了对现有经济体系的依赖,削弱长期变革的可能性。 5. 权力震撼: 通过展示统治阶级的权力(

By Ne0inhk