eva_giant_patch14_224.clip_ft_in1k 排名第九支持224
eva_giant_patch14_224.clip_ft_in1k 的模型卡
EVA-CLIP 图像分类模型。论文作者在 LAION-400M 上使用 CLIP 进行预训练,并在 ImageNet-1k 上进行微调。EVA-CLIP 使用 MIM 预训练图像塔和预训练文本塔、FLIP 补丁 dropout 以及不同的优化器和 hparams 来加速训练。
注意:timm
为了与其他模型保持一致,检查点是 float32。在某些情况下,原始检查点是 float16 或 bfloat16,如果愿意,请参阅原始检查点。
模型详细信息
- 模型类型:图像分类/特征主干
- 模型统计:
- 参数(M):1012.6
- GMAC:267.2
- 激活数(百万):192.6
- 图片尺寸:224 x 224
- 文件:
- EVA-CLIP:改进的大规模 CLIP 训练技术:
- 原来的:
模型使用
图像分类 from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('eva_giant_patch14_224.clip_ft_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize)data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
图像嵌入 from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'eva_giant_patch14_224.clip_ft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear) model = model.eval() # get model specific transforms (normalization, resize)data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 257, 1408) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
模型比较
中探索该模型的数据集和运行时指标。
模型 | 顶部1 | 前5名 | 参数计数 | 图片尺寸 |
---|---|---|---|---|
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k | 90.054 | 99.042 | 305.08 | 448 |
eva02_large_patch14_448.mim_in22k_ft_in22k_in1k | 89.946 | 99.01 | 305.08 | 448 |
eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.792 | 98.992 | 1014.45 | 560 |
eva02_large_patch14_448.mim_in22k_ft_in1k | 89.626 | 98.954 | 305.08 | 448 |
eva02_large_patch14_448.mim_m38m_ft_in1k | 89.57 | 98.918 | 305.08 | 448 |
eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.56 | 98.956 | 1013.01 | 336 |
eva_giant_patch14_336.clip_ft_in1k | 89.466 | 98.82 | 1013.01 | 336 |
eva_large_patch14_336.in22k_ft_in22k_in1k | 89.214 | 98.854 | 304.53 | 336 |
eva_giant_patch14_224.clip_ft_in1k | 88.882 | 98.678 | 1012.56 | 224 |
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k | 88.692 | 98.722 | 87.12 | 448 |
eva_large_patch14_336.in22k_ft_in1k | 88.652 | 98.722 | 304.53 | 336 |
eva_large_patch14_196.in22k_ft_in22k_in1k | 88.592 | 98.656 | 304.14 | 196 |
eva02_base_patch14_448.mim_in22k_ft_in1k | 88.23 | 98.564 | 87.12 | 448 |
eva_large_patch14_196.in22k_ft_in1k | 87.934 | 98.504 | 304.14 | 196 |
eva02_small_patch14_336.mim_in22k_ft_in1k | 85.74 | 97.614 | 22.13 | 336 |
eva02_tiny_patch14_336.mim_in22k_ft_in1k | 80.658 | 95.524 | 5.76 | 336 |