Flink 1.11:更好用的流批一体 SQL 引擎

Flink 1.11:更好用的流批一体 SQL 引擎

许多的数据科学家,分析师和 BI 用户依赖交互式 SQL 查询分析数据。Flink SQL 是 Flink 的核心模块之一。作为一个分布式的 SQL 查询引擎。Flink SQL 提供了各种异构数据源的联合查询。开发者可以很方便地在一个程序中通过 SQL 编写复杂的分析查询。通过 CBO 优化器、列式存储、和代码生成技术,Flink SQL 拥有非常高的查询效率。同时借助于 Flink runtime 良好的容错和扩展性,Flink SQL 可以轻松处理海量数据。

在保证优秀性能的同时,易用性是 1.11 版本 Flink SQL 的重头戏。易用性的提升主要体现在以下几个方面:

  • 更方便的追加或修改表定义
  • 灵活的声明动态的查询参数
  • 加强和统一了原有 TableEnv 上的 SQL 接口
  • 简化了 connector 的属性定义
  • 对 Hive 的 DDL 做了原生支持
  • 加强了对 python UDF 的支持

下面逐一为大家介绍 ~

Create Table Like


在生产中,用户常常有调整现有表定义的需求。例如用户想在一些外部的表定义(例如 Hive metastore)基础上追加 Flink 特有的一些定义比如 watermark。在 ETL 场景中,将多张表的数据合并到一张表,目标表的 schema 定义其实是上游表的合集,需要一种方便合并表定义的方式。

从 1.11 版本开始,Flink 提供了 LIKE 语法,用户可以很方便的在已有的表定义上追加新的定义。

例如我们可以使用下面的语法给已有表 base_table 追加 watermark 定义:

CREATE [TEMPORARY] TABLE base_table (    id BIGINT,    name STRING,    tstmp TIMESTAMP,    PRIMARY KEY(id)) WITH (    'connector': 'kafka') CREATE [TEMPORARY] TABLE derived_table (    WATERMARK FOR tstmp AS tsmp - INTERVAL '5' SECOND)LIKE base_table;


这里 derived_table 表定义等价于如下定义:

CREATE [TEMPORARY] TABLE derived_table (    id BIGINT,    name STRING,    tstmp TIMESTAMP,    PRIMARY KEY(id),    WATERMARK FOR tstmp AS tsmp - INTERVAL '5' SECOND) WITH (    ‘connector’: ‘kafka’)


对比之下,新的语法省去了重复的 schema 定义,用户只需要定义追加属性,非常方便简洁。

多属性策略

有的小伙伴会问,原表和新表的属性只是新增或追加吗?如果我想覆盖或者排除某些属性该如何操作?这是一个好问题,Flink LIKE 语法提供了非常灵活的表属性操作策略。

LIKE 语法支持使用不同的 keyword 对表属性分类:

  • ALL:完整的表定义
  • CONSTRAINTS: primary keys, unique key 等约束
  • GENERATED: 主要指计算列和 watermark
  • OPTIONS: WITH (...) 语句内定义的 table options
  • PARTITIONS: 表分区信息

在不同的属性分类上可以追加不同的属性行为:

  • INCLUDING:包含(默认行为)
  • EXCLUDING:排除
  • OVERWRITING:覆盖

下面这张表格说明了不同的分类属性允许的行为:


INCLUDING

EXCLUDING

OVERWRITING

ALL

✔️

✔️

CONSTRAINTS

✔️

✔️

PARTITIONS

✔️

✔️

GENERATED

✔️

✔️

✔️

OPTIONS

✔️

✔️

✔️

例如下面的语句:

CREATE [TEMPORARY] TABLE base_table (    id BIGINT,    name STRING,    tstmp TIMESTAMP,    PRIMARY KEY(id)) WITH (    'connector': 'kafka',    'scan.startup.specific-offsets': 'partition:0,offset:42;partition:1,offset:300',    'format': 'json') CREATE [TEMPORARY] TABLE derived_table (    WATERMARK FOR tstmp AS tsmp - INTERVAL '5' SECOND)WITH (    'connector.starting-offset': '0')LIKE base_table (OVERWRITING OPTIONS, EXCLUDING CONSTRAINTS);

等价的表属性定义为:

CREATE [TEMPORARY] TABLE derived_table (    id BIGINT,    name STRING,    tstmp TIMESTAMP,    WATERMARK FOR tstmp AS tsmp - INTERVAL '5' SECOND) WITH (    'connector': 'kafka',    'scan.startup.specific-offsets': 'partition:0,offset:42;partition:1,offset:300',    'format': 'json')


细节参见:https://ci.apache.org/projects/flink/flink-docs-master/dev/table/sql/create.html#create-table


Dynamic Table Options


在生产中,调整参数是一个常见需求,很多的时候是临时修改(比如通过终端查询和展示),比如下面这张 Kafka 表:

create table kafka_table (
  id bigint,
  age int,
  name STRING
) WITH (
  'connector' = 'kafka',
  'topic' = 'employees',
  'scan.startup.mode' = 'timestamp',
  'scan.startup.timestamp-millis' = '123456',
  'format' = 'csv',
  'csv.ignore-parse-errors' = 'false'
)

在之前的版本,如果用户有如下需求:

  • 用户需要指定特性的消费时间戳,即修改 scan.startup.timestamp-millis 属性
  • 用户想忽略掉解析错误,需要将 format.ignore-parse-errors 改为 true

只能使用 ALTER TABLE 这样的语句修改表的定义,从 1.11 开始,用户可以通过动态参数的形式灵活地设置表的属性参数,覆盖或者追加原表的 WITH (...) 语句内定义的 table options。

基本语法为:

table_name /*+ OPTIONS('k1'='v1', 'aa.bb.cc'='v2') */


OPTIONS 内的键值对会覆盖原表的 table options,用户可以在各种 SQL 语境中使用这样的语法,例如:

CREATE TABLE kafka_table1 (id BIGINT, name STRING, age INT) WITH (...);CREATE TABLE kafka_table2 (id BIGINT, name STRING, age INT) WITH (...);
-- override table options in query sourceselect id, name from kafka_table1 /*+ OPTIONS('scan.startup.mode'='earliest-offset') */;
-- override table options in joinselect * from    kafka_table1 /*+ OPTIONS('scan.startup.mode'='earliest-offset') */ t1    join    kafka_table2 /*+ OPTIONS('scan.startup.mode'='earliest-offset') */ t2    on t1.id = t2.id;
-- override table options for INSERT target tableinsert into kafka_table1 /*+ OPTIONS('sink.partitioner'='round-robin') */ select * from kafka_table2;


动态参数的使用没有语境限制,只要是引用表的地方都可以追加定义。在指定的表后面追加的动态参数会自动追加到原表定义中,是不是很方便呢 :)

由于可能对查询结果有影响,动态参数功能默认是关闭的, 使用下面的方式开启该功能:

// instantiate table environmentTableEnvironment tEnv = ...// access flink configurationConfiguration configuration = tEnv.getConfig().getConfiguration();// set low-level key-value optionsconfiguration.setString("table.dynamic-table-options.enabled", "true");


细节参见:https://ci.apache.org/projects/flink/flink-docs-master/dev/table/sql/hints.html

SQL API 改进

随着 Flink SQL 支持的语句越来越丰富,老的 API 容易引起一些困惑:

  • 原先的 sqlUpdate() 方法传递 DDL 语句会立即执行,而 INSERT INTO 语句在调用 execute 方法时才会执行
  • Table 程序的执行入口不够清晰,像 TableEnvironment.execute() 和 StreamExecutionEnvironment.execute() 都可以触发 table 程序执行
  • execute 方法没有返回值。像 SHOW TABLES 这样的语句没有很好地方式返回结果。另外,sqlUpdate 方法加入了越来越多的语句导致接口定义不清晰,sqlUpdate 可以执行 SHOW TABLES 就是一个反例
  • 在 Blink planner 一直提供多 sink 优化执行的能力,但是在 API 层没有体现出来

1.11 重新梳理了 TableEnv 上的 sql 相关接口,提供了更清晰的执行语义,同时执行任意 sql 语句现在都有返回值,用户可以通过新的 API 灵活的组织多行 sql 语句一起执行。

更清晰的执行语义

新的接口 TableEnvironment#executeSql 统一返回抽象 TableResult,用户可以迭代 TableResult 拿到执行结果。根据执行语句的不同,返回结果的数据结构也有变化,比如 SELECT 语句会返回查询结果,而 INSERT 语句会异步提交作业到集群。

组织多条语句一起执行

新的接口 TableEnvironment#createStatementSet 允许用户添加多条 INSERT 语句并一起执行,在多 sink 场景,Blink planner 会针对性地对执行计划做优化。

新旧 API 对比

一张表格感受新老 API 的变化:

sqlUpdate vs executeSql

Current Interface

New Interface

tEnv.sqlUpdate("CREATE TABLE ...");

TableResult result = tEnv.executeSql("CREATE TABLE ...");

tEnv.sqlUpdate("INSERT INTO ... SELECT ...");

tEnv.execute("test");

TableResult result = tEnv.executeSql("INSERT INTO ... SELECT ...");


execute vs createStatementSet

Current Interface

New Interface

tEnv.sqlUpdate("insert into xx ...")

tEnv.sqlUpdate("insert into yy ...")

tEnv.execute("test")

StatementSet ss = tEnv.createStatementSet();

ss.addInsertSql("insert into xx ...");

ss.addInsertSql("insert into yy ...");

TableResult result = ss.execute();

tEnv.insertInto("sink1", table1)

tEnv.insertInto("sink2", table2)

tEnv.execute("test")

StatementSet ss = tEnv.createStatementSet();

ss.addInsert("sink1", table1);

ss.addInsert("sink2", table2);

TableResult result = ss.execute()

详情参见:https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=134745878

Hive 语法兼容加强

从 1.11 开始,Flink  SQL 将 Hive parser 模块独立出来,用以兼容 Hive 的语法,目前 DDL 层面,DB、Table、View、Function 相关的语法均已支持。搭配 HiveCatalog,Hive 的同学可以直接使用 Hive 的语法来进行相关的操作。

在使用 hive 语句之前需要设置正确的 Dialect:

EnvironmentSettings settings = EnvironmentSettings.newInstance()...build();TableEnvironment tableEnv = TableEnvironment.create(settings);// to use hive dialecttableEnv.getConfig().setSqlDialect(SqlDialect.HIVE);// use the hive catalogtableEnv.registerCatalog(hiveCatalog.getName(), hiveCatalog);tableEnv.useCatalog(hiveCatalog.getName());


之后我们便可以使用 Hive 的语法来执行一些 DDL,例如最常见的建表操作:

create external table tbl1 (  d decimal(10,0),  ts timestamp)partitioned by (p string)location '%s'tblproperties('k1'='v1');  create table tbl2 (s struct<ts:timestamp,bin:binary>) stored as orc;
create table tbl3 (  m map<timestamp,binary>)partitioned by (p1 bigint, p2 tinyint)row format serde 'org.apache.hadoop.hive.serde2.lazybinary.LazyBinarySerDe';
create table tbl4 (  x int,  y smallint)row format delimited fields terminated by '|' lines terminated by '\n';


对于 DQL 的 Hive 语法兼容已经在规划中,1.12 版本会兼容更多 query 语法 ~

详情参见:https://ci.apache.org/projects/flink/flink-docs-master/dev/table/hive/hive_dialect.html


更简洁的 connector 属性

1.11 重新规范了 connector 的属性定义,新的属性 key 更加直观简洁,和原有的属性 key 相比主要做了如下改动:

  • 使用 connector 作为 connector 的类型 key,connector 版本信息直接放到 value 中,比如 0.11 的 kafka 为 kafka-0.11
  • 去掉了其余属性中多余的 connector 前缀
  • 使用 scan 和 sink 前缀标记 source 和 sink 专有属性
  • format.type 精简为 format ,同时 format 自身属性使用 format 的值作为前缀,比如 csv format 的自身属性使用 csv 统一作前缀

例如,1.11 Kafka 表的定义如下:

CREATE TABLE kafkaTable ( user_id BIGINT, item_id BIGINT, category_id BIGINT, behavior STRING, ts TIMESTAMP(3)) WITH ( 'connector' = 'kafka', 'topic' = 'user_behavior', 'properties.bootstrap.servers' = 'localhost:9092', 'properties.group.id' = 'testGroup', 'format' = 'csv', 'scan.startup.mode' = 'earliest-offset')

详情参见:https://cwiki.apache.org/confluence/display/FLINK/FLIP-122%3A+New+Connector+Property+Keys+for+New+Factory


JDBC catalog

在之前的版本中,用户只能通过显示建表的方式创建关系型数据库的镜像表。用户需要手动追踪 Flink SQL 的表 schema 和数据库的 schema 变更。在 1.11,Flink SQL 提供了一个 JDBC catalog 接口对接各种外部的数据库系统,例如 Postgres、MySQL、MariaDB、AWS Aurora、etc。

当前 Flink 内置了 Postgres 的 catalog 实现,使用下面的代码配置 JDBC catalog:

CREATE CATALOG mypg WITH(
    'type' = 'jdbc',
    'default-database' = '...',
    'username' = '...',
    'password' = '...',
    'base-url' = '...'
);


USE CATALOG mypg;

用户也可以实现 JDBCCatalog 接口定制其他数据库的 catalog ~

详情参见:https://ci.apache.org/projects/flink/flink-docs-master/dev/table/connectors/jdbc.html#postgres-database-as-a-catalog


Python UDF 增强

1.11 版本的 py-flink 在 python UDF 方面提供了很多增强,包括 DDL 的定义方式、支持了标量的向量化 python UDF,支持全套的 python UDF metrics 定义,以及在 SQL-CLI 中定义 python UDF。

DDL 定义 python UDF

1.10.0 版本引入了对 python UDF 的支持。但是仅仅支持 python table api 的方式。1.11 提供了 SQL DDL 的方式定义 python UDF, 用户可以在 Java/Scala table API 以及 SQL-CLI 场景下使用。

例如,现在用户可以使用如下方式定义 Java table API 程序使用 python UDF:

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();BatchTableEnvironment tEnv = BatchTableEnvironment.create(env);
tEnv.getConfig().getConfiguration().setString("python.files", "/home/my/test1.py");tEnv.getConfig().getConfiguration().setString("python.client.executable", "python3");tEnv.sqlUpdate("create temporary system function func1 as 'test1.func1' language python");Table table = tEnv.fromDataSet(env.fromElements("1", "2", "3")).as("str").select("func1(str)");
tEnv.toDataSet(table, String.class).collect();


向量化支持

向量化 Python  UDF 相较于普通函数大大提升了性能。用户可以使用流行的 python 库例如 Pandas、Numpy 来实现向量化的 python UDF。用户只需在装饰器 udf 中添加额外的参数 udf_type="pandas" 即可。

例如,下面的样例展示了如何定义向量化的 Python 标量函数以及在 python table api 中的应用:

@udf(input_types=[DataTypes.BIGINT(), DataTypes.BIGINT()], result_type=DataTypes.BIGINT(), udf_type="pandas")def add(i, j):  return i + j
table_env = BatchTableEnvironment.create(env)
# register the vectorized Python scalar functiontable_env.register_function("add", add)
# use the vectorized Python scalar function in Python Table APImy_table.select("add(bigint, bigint)")
# use the vectorized Python scalar function in SQL APItable_env.sql_query("SELECT add(bigint, bigint) FROM MyTable")


详情参见:https://ci.apache.org/projects/flink/flink-docs-master/dev/table/python/vectorized_python_udfs.html

另外,1.11 对 python UDF 的 metrics 做了全面支持,现在用户可以在 UDF 中方便地定义各种类型的 metrics,由于篇幅关系,这里不作详细描述,见 python UDF metrics。


详情参见:https://ci.apache.org/projects/flink/flink-docs-master/dev/table/python/metrics.html

展望后续

在后续版本,易用性仍然是 Flink SQL 的核心主题,比如 schema 的易用性增强,Descriptor API 简化以及更丰富的流 DDL 将会是努力的方向,让我们拭目以待 ~