hashmap hashtable
zhuan: ,
Hashmap
Hashmap是一种非常常用的、应用广泛的数据类型,最近研究到相关的内容,就正好复习一下。网上关于hashmap的文章很多,但到底是自己学习的总结,就发出来跟大家一起分享,一起讨论。
1、hashmap的数据结构
要知道hashmap是什么,首先要搞清楚它的数据结构,在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,hashmap也不例外。Hashmap实际上是一个数组和链表的结合体(在数据结构中,一般称之为“链表散列“),请看下图(横排表示数组,纵排表示数组元素【实际上是一个链表】)。
从图中我们可以看到一个hashmap就是一个数组结构,当新建一个hashmap的时候,就会初始化一个数组。我们来看看java代码:
Java代码
- /**
- * The table, resized as necessary. Length MUST Always be a power of two.
- * FIXME 这里需要注意这句话,至于原因后面会讲到
- */
- transient Entry[] table;
/**
* The table, resized as necessary. Length MUST Always be a power of two.
* FIXME 这里需要注意这句话,至于原因后面会讲到
*/
transient Entry[] table;
Java代码
- static class Entry<K,V> implements Map.Entry<K,V> {
- final K key;
- V value;
- final int hash;
- Entry<K,V> next;
- ..........
- }
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
final int hash;
Entry<K,V> next;
..........
}
上面的Entry就是数组中的元素,它持有一个指向下一个元素的引用,这就构成了链表。
当我们往hashmap中put元素的时候,先根据key的hash值得到这个元素在数组中的位置(即下标),然后就可以把这个元素放到对应的位置中了。如果这个元素所在的位子上已经存放有其他元素了,那么在同一个位子上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。从hashmap中get元素时,首先计算key的hashcode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。从这里我们可以想象得到,如果每个位置上的链表只有一个元素,那么hashmap的get效率将是最高的,但是理想总是美好的,现实总是有困难需要我们去克服,哈哈~
2、hash算法
我们可以看到在hashmap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过hashmap的数据结构是数组和链表的结合,所以我们当然希望这个hashmap里面的元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表。
所以我们首先想到的就是把hashcode对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,能不能找一种更快速,消耗更小的方式那?java中时这样做的,
Java代码
- static int indexFor(int h, int length) {
- return h & (length-1);
- }
static int indexFor(int h, int length) {
return h & (length-1);
}
首先算得key得hashcode值,然后跟数组的长度-1做一次“与”运算(&)。看上去很简单,其实比较有玄机。比如数组的长度是2的4次方,那么hashcode就会和2的4次方-1做“与”运算。很多人都有这个疑问,为什么hashmap的数组初始化大小都是2的次方大小时,hashmap的效率最高,我以2的4次方举例,来解释一下为什么数组大小为2的幂时hashmap访问的性能最高。
看下图,左边两组是数组长度为16(2的4次方),右边两组是数组长度为15。两组的hashcode均为8和9,但是很明显,当它们和1110“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到同一个链表上,那么查询的时候就需要遍历这个链表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hashcode的值会与14(1110)进行“与”,那么最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!
所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。
说到这里,我们再回头看一下hashmap中默认的数组大小是多少,查看源代码可以得知是16,为什么是16,而不是15,也不是20呢,看到上面annegu的解释之后我们就清楚了吧,显然是因为16是2的整数次幂的原因,在小数据量的情况下16比15和20更能减少key之间的碰撞,而加快查询的效率。
所以,在存储大容量数据的时候,最好预先指定hashmap的size为2的整数次幂次方。就算不指定的话,也会以大于且最接近指定值大小的2次幂来初始化的,代码如下(HashMap的构造方法中):
Java代码
- // Find a power of 2 >= initialCapacity
- int capacity = 1;
- while (capacity < initialCapacity)
- capacity <<= 1;
// Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
3、hashmap的resize
当hashmap中的元素越来越多的时候,碰撞的几率也就越来越高(因为数组的长度是固定的),所以为了提高查询的效率,就要对hashmap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,所以这是一个通用的操作,很多人对它的性能表示过怀疑,不过想想我们的“均摊”原理,就释然了,而在hashmap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。
那么hashmap什么时候进行扩容呢?当hashmap中的元素个数超过数组大小*loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,也就是说,默认情况下,数组大小为16,那么当hashmap中元素个数超过16*0.75=12的时候,就把数组的大小扩展为2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知hashmap中元素的个数,那么预设元素的个数能够有效的提高hashmap的性能。比如说,我们有1000个元素new HashMap(1000), 但是理论上来讲new HashMap(1024)更合适,不过上面annegu已经说过,即使是1000,hashmap也自动会将其设置为1024。 但是new HashMap(1024)还不是更合适的,因为0.75*1000 < 1000, 也就是说为了让0.75 * size > 1000, 我们必须这样new HashMap(2048)才最合适,既考虑了&的问题,也避免了resize的问题。
4、key的hashcode与equals方法改写
在第一部分hashmap的数据结构中,annegu就写了get方法的过程:首先计算key的hashcode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。所以,hashcode与equals方法对于找到对应元素是两个关键方法。
Hashmap的key可以是任何类型的对象,例如User这种对象,为了保证两个具有相同属性的user的hashcode相同,我们就需要改写hashcode方法,比方把hashcode值的计算与User对象的id关联起来,那么只要user对象拥有相同id,那么他们的hashcode也能保持一致了,这样就可以找到在hashmap数组中的位置了。如果这个位置上有多个元素,还需要用key的equals方法在对应位置的链表中找到需要的元素,所以只改写了hashcode方法是不够的,equals方法也是需要改写滴~当然啦,按正常思维逻辑,equals方法一般都会根据实际的业务内容来定义,例如根据user对象的id来判断两个user是否相等。
在改写equals方法的时候,需要满足以下三点:
(1) 自反性:就是说a.equals(a)必须为true。
(2) 对称性:就是说a.equals(b)=true的话,b.equals(a)也必须为true。
(3) 传递性:就是说a.equals(b)=true,并且b.equals(c)=true的话,a.equals(c)也必须为true。
通过改写key对象的equals和hashcode方法,我们可以将任意的业务对象作为map的key(前提是你确实有这样的需要)。
总结:
本文主要描述了HashMap的结构,和hashmap中hash函数的实现,以及该实现的特性,同时描述了hashmap中resize带来性能消耗的根本原因,以及将普通的域模型对象作为key的基本要求。尤其是hash函数的实现,可以说是整个HashMap的精髓所在,只有真正理解了这个hash函数,才可以说对HashMap有了一定的理解。
这是hashmap第一篇,主要讲了一下hashmap的数据结构和计算hash的算法。接下去annegu还会写第二篇,主要讲讲LinkedHashMap和LRUHashMap。先做个预告,呵呵~
Hashtable
哈希表是种数据结构,它可以提供快速的插入操作和查找操作。第一次接触哈希表时,它的优点多得让人难以置信。不论哈希表中有多少数据,插入和删除(有时包括侧除)只需要接近常量的时间即0(1)的时间级。实际上,这只需要几条机器指令。
对哈希表的使用者一一人来说,这是一瞬间的事。哈希表运算得非常快,在计算机程序中,如果需要在一秒种内查找上千条记录通常使用哈希表(例如拼写检查器)哈希表的速度明显比树快,树的操作通常需要O(N)的时间级。哈希表不仅速度快,编程实现也相对容易。
哈希表也有一些缺点它是基于数组的,数组创建后难于扩展某些哈希表被基本填满时,性能下降得非常严重,所以程序虽必须要清楚表中将要存储多少数据(或者准备好定期地把数据转移到更大的哈希表中,这是个费时的过程)。
而且,也没有一种简便的方法可以以任何一种顺序〔例如从小到大〕遍历表中数据项。如果需要这种能力,就只能选择其他数据结构。
然而如果不需要有序遍历数据,井且可以提前预测数据量的大小。那么哈希表在速度和易用性方面是无与伦比的。
哈希表算法-哈希表的概念及作用
一般的,树中,记录在结构中的相对位置是的,即和记录的关键字之间不存在确定的关系,因此,在结构中查找记录时需进行一系列和的比较。这一类查找方法建立在“比较“的基础上,查找的依赖于查找过程中所进行的比较次数。
理想的情况是能直接找到需要的记录,因此必须在记录的存储位置和它的关键字之间建立一个确定的对应关系f,使每个关键字和结构中一个唯一的存储位置相对应。
哈希表最常见的例子是以学生学号为关键字的成绩表,1号学生的记录位置在第一条,10号学生的记录位置在第10条...
如果我们以学生姓名为关键字,如何建立查找表,使得根据姓名可以直接找到相应记录呢?
哈希表算法
用上述得到的数值作为对应记录在表中的位置,得到下表: 哈希表算法
上面这张表即哈希表。
如果将来要查李秋梅的,可以用上述方法求出该记录所在位置:
李秋梅:lqm 12+17+13=42 取表中第42条记录即可。
问题:如果两个同学分别叫 刘丽 刘兰 该如何处理这两条记录?
这个问题是哈希表不可避免的,即:对不同的关键字可能得到同一哈希地址。
哈希表算法-哈希表的构造方法
1、直接定址法
例如:有一个从1到100岁的人口数字统计表,其中,年龄作为关键字,哈希函数取关键字自身。
但这种方法效率不高,时间复杂度是O(1),空间复杂度是O(n),n是关键字的个数
哈希表算法
2、数字分析法
有学生的生日数据如下:
年.月.日
75.10.03
75.11.23
76.03.02
76.07.12
75.04.21
76.02.15
...
经分析,第一位,第二位,第三位重复的可能性大,取这三位造成冲突的机会增加,所以尽量不取前三位,取后三位比较好。
3、平方取中法
取关键字平方后的中间几位为。
4、折叠法
将关键字分割成位数相同的几部分(最后一部分的位数可以不同),然后取这几部分的叠加和(舍去进位)作为哈希地址,这方法称为折叠法。
例如:每一种西文图书都有一个国际标准图书编号,它是一个10位的十进制数字,若要以它作关键字建立一个哈希表,当馆藏书种类不到10,000时,可采用此法构造一个四位数的哈希函数。如果一本书的编号为0-442-20586-4,则:
哈希表算法
5、除留余数法
取关键字被某个不大于哈希表表长m的数p除后所得余数为哈希地址。
H(key)=key MOD p (p<=m)
6、随机数法
选择一个随机函数,取关键字的随机函数值为它的哈希地址,即
H(key)=random(key) ,其中random为随机函数。通常用于关键字长度不等时采用此法。
5、除留余数法
取关键字被某个不大于哈希表表长m的数p除后所得余数为哈希地址。
H(key)=key MOD p (p<=m)
6、随机数法
选择一个随机函数,取关键字的随机函数值为它的哈希地址,即
H(key)=random(key) ,其中random为随机函数。通常用于关键字长度不等时采用此法。
5、除留余数法
取关键字被某个不大于哈希表表长m的数p除后所得余数为哈希地址。
H(key)=key MOD p (p<=m)
6、随机数法
选择一个,取关键字的随机函数值为它的哈希地址,即
H(key)=random(key) ,其中random为随机函数。通常用于关键字长度不等时采用此法。
哈希表算法-处理冲突的方法
如果两个同学分别叫 刘丽 刘兰,当加入刘兰时,地址24发生了冲突,我们可以以某种规律使用其它的存储位置,如果选择的一个其它位置仍有冲突,则再选下一个,直到找到没有冲突的位置。选择其它位置的方法有:
1、开放定址法
Hi=(H(key)+di) MOD m i=1,2,...,k(k<=m-1)
其中m为表长,di为增量序列
如果di值可能为1,2,3,...m-1,称线性探测再散列。
如果di取值可能为1,-1,2,-2,4,-4,9,-9,16,-16,...k*k,-k*k(k<=m/2)
称二次探测再。
如果di取值可能为伪随机数列。称伪随机探测再散列。
例:在长度为11的哈希表中已填有关键字分别为17,60,29的记录,现有第四个记录,其关键字为38,由哈希函数得到地址为5,若用线性探测再散列,如下:
哈希表算法
2、再哈希法
当发生冲突时,使用第二个、第三个、哈希函数计算地址,直到无冲突时。缺点:计算时间增加。
3、链地址法
将所有关键字为同义词的记录存储在同一线性链表中。 哈希表算法
4、建立一个公共
假设哈希函数的值域为[0,m-1],则设向量HashTable[0..m-1]为基本表,另外设立存储空间向量OverTable[0..v]用以存储发生冲突的记录。