记一次性能优化,单台4核8G机器支撑5万QPS,硬核!

记一次性能优化,单台4核8G机器支撑5万QPS,硬核!

前言

这篇文章的主题是记录一次性能优化,在优化的过程中遇到的问题,以及如何去解决的。为大家提供一个优化的思路,首先要声明的一点是,我的方式不是唯一的,大家在性能优化之路上遇到的问题都绝对不止一个解决方案。

如何优化

首先大家要明确的一点是,脱离需求谈优化都是耍流氓,所以有谁跟你说在xx机器上实现了百万并发,基本上可以认为是不懂装懂了,单纯的并发数完全是无意义的。

其次,我们优化之前必须要有一个目标,需要优化到什么程度,没有明确目标的优化是不可控的。再然后,我们必须明确的找出性能瓶颈在哪里,而不能漫无目的的一通乱搞。

需求描述

这个项目是我在上家公司负责一个单独的模块,本来是集成在主站代码中的,后来因为并发太大,为了防止出现问题后拖累主站服务,所有由我一个人负责拆分出来。

对这个模块的拆分要求是,压力测试QPS不能低于3万,数据库负责不能超过50%,服务器负载不能超过70%, 单次请求时长不能超过70ms,错误率不能超过5%。

环境的配置如下:

  • 服务器:4核8G内存,centos7系统,ssd硬盘
  • 数据库:Mysql5.7,最大连接数800
  • 缓存: redis, 1G容量。

以上环境都是购买自腾讯云的服务。

压测工具:locust,使用腾讯的弹性伸缩实现分布式的压测。 需求描述如下:

用户进入首页,从数据库中查询是否...

Read more

超快速,使用ChatGPT编写回归和分类算法

超快速,使用ChatGPT编写回归和分类算法

本文将使用一些 ChatGPT 提示,这些提示对于数据科学家在工作时非常重要。 微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩 以下是一些示例ChatGPT 提示的列表以及数据科学家的响应。 ChatGPT 提示 为决策树回归算法生成 python 代码。 下面是使用scikit-learn在 Python 中进行决策树回归的示例代码: import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Generate random data rng = np.random.default_rng() x = 5 * rng.random(100) y = np.sin(x) + 0.

By Ne0inhk
力扣每日一题:993.二叉树的堂兄弟节点 深度优先算法

力扣每日一题:993.二叉树的堂兄弟节点 深度优先算法

993.二叉树的堂兄弟节点 难度:简单 题目: 在二叉树中,根节点位于深度 0 处,每个深度为 k 的节点的子节点位于深度 k+1 处。 如果二叉树的两个节点深度相同,但 父节点不同 ,则它们是一对堂兄弟节点。 我们给出了具有唯一值的二叉树的根节点 root ,以及树中两个不同节点的值 x 和 y 。 只有与值 x 和 y 对应的节点是堂兄弟节点时,才返回 true 。否则,返回 false。 示例: 示例 1: 输入:root = [1,2,3,4], x = 4, y = 3 输出:false

By Ne0inhk
1239.串联字符串的最大长度 关于字符串的回溯算法!

1239.串联字符串的最大长度 关于字符串的回溯算法!

题目: 给定一个字符串数组 arr,字符串 s 是将 arr 某一子序列字符串连接所得的字符串, 如果 s 中的每一个字符都只出现过一次,那么它就是一个可行解。 请返回所有可行解 s 中最长长度。 提示: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] 中只含有小写英文字母 示例: 示例 1: 输入:arr = ["un","iq","ue"] 输出:4 解释:所有可能的串联组合是

By Ne0inhk