o1的风又吹到多模态,直接吹翻了GPT-4o-mini

o1的风又吹到多模态,直接吹翻了GPT-4o-mini

开源LLaVA-o1**:一个设计用于进行自主多阶段推理的新型VLM。与思维链提示不同,LLaVA-o1独立地参与到总结、视觉解释、逻辑推理和结论生成**的顺序阶段。

LLaVA-o1超过了一些更大甚至是闭源模型的性能,例如Gemini-1.5-proGPT-4o-miniLlama-3.2-90B-Vision-Instruct

www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini

基础模型与LLaVA-o1的比较。基础模型Llama-3.2-11B-Vision-Instruct在推理过程中有明显的缺陷,整个推理过程中出现了几个错误。相比之下,LLaVA-o1****首先概述问题,从图像中解释相关信息然后进行逐步推理过程,并最终得出一个有充分支持的结论

www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini

LLaVA-o1如何炼成

LLaVA-o1模型的结构化推理框架****,专门的数据集和训练方法,以及推理时的阶段性束搜索策略,来提高模型在复杂任务中的推理能力和扩展性。

  1. 结构化推理阶段:

总结阶段(Summary Stage):LLaVA-o1在这一阶段提供对问题的高层次总结,概述它打算解决的问题的主要方面。

图像描述阶段(Caption Stage):如果存在图像,LLaVA-o1提供与问题相关的图像元素的简洁概述,帮助理解多模态输入。

推理阶段(Reasoning Stage):在初始总结的基础上,LLaVA-o1进行结构化、逻辑推理,得出初步答案。

结论阶段(Conclusion Stage):在最后阶段,LLaVA-o1根据前面的推理综合答案。结论阶段的输出是直接提供给用户的响应,而前三个阶段是内部的“隐藏阶段”,代表LLaVA-o1的推理过程。

四对特殊标签:、、和

  1. 数据准备和模型训练:

由于现有的视觉问题回答(VQA)数据集缺乏训练LLaVA-o1所需的详细推理过程,研究者们编译了一个新的数据集LLaVA-o1-100k,整合了多个广泛使用的VQA数据集的样本。

使用GPT-4o生成包括总结、图像描述、推理和结论的详细推理过程,并将这些编译成LLaVA-o1-100k数据集。

选择了Llama-3.2-11B-Vision-Instruct模型作为基础模型,并使用LLaVA-o1-100k数据集进行全参数微调。

www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini
  1. 有效的推理时扩展使用阶段性束搜索:

训练完成后的目标是在推理期间进一步增强模型的推理能力。LLaVA-o1的输出设计为结构化,提供了理想的粒度,用于推理时扩展。

采用阶段性束搜索方法,该方法在每个推理阶段生成多个候选结果,并选择最佳结果以继续生成过程。

通过在每个阶段进行有效的验证,这种方法验证了结构化输出在提高推理时扩展中的有效性。

推理方法的示意图最佳选择法(Best-of-N search)生成N个完整的响应,并从中选择最好的一个;**句子级束搜索(**Sentence-level Beam Search)为每个句子生成多个候选项并选择最好的一个。相比之下,LLaVA-o1的阶段性束搜索(Stage-level Beam Search)为每个推理阶段(例如,总结、标题、推理和结论)生成候选项,并在每个阶段选择最佳选项。最佳选择法在粗略层面上操作,而句子级束搜索过于细致,而LLaVA-o1的方法实现了最佳平衡并取得了最佳性能。

www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini

有无阶段性束搜索的LLaVA-o1性能比较。LLaVA-o1的阶段性束搜索在模型推理过程中有效地选择了更好的推理。

www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini

实验数据

LLaVA-o1在多模态推理基准测试中相较于其基础模型Llama-3.2-11B-Vision-Instruct实现了**8.9%**的性能提升。

LLaVA-o1在各种基准测试中不仅超越了基础模型,还超过了一些更大甚至是闭源模型,例如Gemini-1.5-pro、GPT-4o-mini和Llama-3.2-90B-Vision-Instruct。

**结构化标签(structured tags)**对于模型性能至关重要。去除这些标签后,模型性能显著下降,说明这些标签有助于推理过程并提高了模型性能。

www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini
www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini
www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini
www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。

www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。

www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

www.zeeklog.com  - o1的风又吹到多模态,直接吹翻了GPT-4o-mini

Read more

印度统治阶级锁死底层人的5大阳谋

印度统治阶级锁死底层人的5大阳谋

基于社会学和心理学视角: 1. 情感道德: 统治阶级通过塑造道德规范和情感价值观,引导底层人群的行为。例如,宣扬“勤劳致富”“忍耐美德”等观念,让底层人接受现状并自我约束。这种道德框架往往掩盖结构性不平等,使人们将个人困境归咎于自身而非系统。 2. 欲望控制: 通过消费主义和媒体宣传,统治阶级刺激底层人的物质与社会欲望(如名牌、地位),但同时设置经济壁垒,使这些欲望难以实现。底层人被困在追求“更好生活”的循环中,精力被分散,无法聚焦于挑战权力结构。 3. 情绪煽动: 利用恐惧、愤怒或民族主义等情绪,统治阶级可以通过媒体或公共事件转移底层人对社会问题的注意力。例如,制造外部敌人或内部对立(如阶层、种族矛盾),让底层人内耗而非联合反抗。 4. 暴利诱惑: 通过展示少数“成功案例”或快速致富的机会(如赌博、投机),诱导底层人追逐短期暴利。这种机制不仅让底层人陷入经济风险,还强化了对现有经济体系的依赖,削弱长期变革的可能性。 5. 权力震撼: 通过展示统治阶级的权力(

By Ne0inhk