OpenCV 目标图像检测函数detectMultiScale

OpenCV 目标图像检测函数detectMultiScale
 void detectMultiScale(
    const Mat& image,
    CV_OUT vector<Rect>& objects,
    double scaleFactor = 1.1,
    int minNeighbors = 3, 
    int flags = 0,
    Size minSize = Size(),
    Size maxSize = Size()
);

参数意思:
1. const Mat& image:输入图像
2. vector& objects:输出的矩形向量组
3. double scaleFactor=1.1:这个是每次缩小图像的比例,默认是1.1
4. minNeighbors=3:匹配成功所需要的周围矩形框的数目,每一个特征匹配到的区域都是一个矩形框,只有多个矩形框同时存在的时候,才认为是匹配成功,比如人脸,这个默认值是3。
5. flags=0:可以取如下这些值:
CASCADE_DO_CANNY_PRUNING=1, 利用canny边缘检测来排除一些边缘很少或者很多的图像区域
CASCADE_SCALE_IMAGE=2, 正常比例检测
CASCADE_FIND_BIGGEST_OBJECT=4, 只检测最大的物体
CASCADE_DO_ROUGH_SEARCH=8 初略的检测
6. minObjectSize maxObjectSize:匹配物体的大小范围

由于人脸可能出现在图像的任何位置,在检测时用固定大小的窗口对图像从上到下、从左到右扫描,判断窗口里的子图像是否为人脸,这称为滑动窗口技术(sliding window)。为了检测不同大小的人脸,还需要对图像进行放大或者缩小构造图像金字塔,对每张缩放后的图像都用上面的方法进行扫描。由于采用了滑动窗口扫描技术,并且要对图像进行反复缩放然后扫描,因此整个检测过程会非常耗时。

以512x512大小的图像为例,假设分类器窗口为24x24,滑动窗口的步长为1,则总共需要扫描的窗口数为:以512x512大小的图像为例,假设分类器窗口为24x24,滑动窗口的步长为1,则总共需要扫描的窗口数为:

以512x512大小的图像为例,假设分类器窗口为24x24,滑动窗口的步长为1,则总共需要扫描的窗口数为:

即要检测一张图片需要扫描大于120万个窗口!!!计算量惊人,因此有必要采取某种措施提高效率