Range Sum of BST
Range Sum of BST
Given the root node of a binary search tree, return the sum of values of all nodes with value between L and R (inclusive).
The binary search tree is guaranteed to have unique values.
Example 1:
Input: root = [10,5,15,3,7,null,18], L = 7, R = 15
Output: 32
Example 2:
Input: root = [10,5,15,3,7,13,18,1,null,6], L = 6, R = 10
Output: 23
Note:
The number of nodes in the tree is at most 10000.
The final answer is guaranteed to be less than 2^31
算法分析
本题主要考察的是二叉查找树的广度优先遍历,可以借助一个队列(slice),完成对二叉树元素的遍历。又由于这是一个二叉查找树。所以可以进行粗略的筛选,例如:如果当前节点的值小于给定范围的最小值,那么当前节点的左子树部分不需要在进入队列进行判断(也一定小于给定范围的最小值),只需要把当前节点的有子树入队列(起码他有一定的可能性大于给定范围的最小值)。通过这种遍历的方法,最后获取和值。
代码示例如下所示:
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func rangeSumBST(root *TreeNode, L int, R int) int {
rsInt := 0
// 借助一个队列对二叉查找树做广度优先遍历
tmpList := []*TreeNode{root}
for {
if len(tmpList) == 0 {
break
}
tmpList_ := []*TreeNode{}
for _, v := range tmpList {
if v.Val >= L && v.Val <= R {
rsInt += v.Val
if v.Left != nil {
tmpList_ = append(tmpList_, v.Left)
}
if v.Right != nil {
tmpList_ = append(tmpList_, v.Right)
}
} else if v.Val > R {
if v.Left != nil {
tmpList_ = append(tmpList_, v.Left)
}
} else {
if v.Right != nil {
tmpList_ = append(tmpList_, v.Right)
}
}
}
tmpList = tmpList_
}
return rsInt
}