深度学习-第二章-Window下Yolov5训练打电话

深度学习-第二章-Window下Yolov5训练打电话

目录

下载源码

github: 并用vscode打开;注意切换到V6.0的分支

新建data目录

# 新建备份data
cp -rp data data_old

准备训练集

将img.zip拷贝到刚创建的data目录下,并解压
同时拷贝custome.yaml到此文件夹

![]

有图片和对应的label信息

![]

修改配置

修改custom.yaml中类别

![]

拷贝process-date文件夹到data目录

![]

修改yolov5s.yaml设置类别

![]

在根目录新建weights权重文件

mkdir weights

在地址下载yolov5s.pt文件。

![]

放入weights目录

![]

修改train.py中自定义部分

parser.add_argument('--weights', type=str, d

Read more

超快速,使用ChatGPT编写回归和分类算法

超快速,使用ChatGPT编写回归和分类算法

本文将使用一些 ChatGPT 提示,这些提示对于数据科学家在工作时非常重要。 微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩 以下是一些示例ChatGPT 提示的列表以及数据科学家的响应。 ChatGPT 提示 为决策树回归算法生成 python 代码。 下面是使用scikit-learn在 Python 中进行决策树回归的示例代码: import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Generate random data rng = np.random.default_rng() x = 5 * rng.random(100) y = np.sin(x) + 0.

By Ne0inhk
力扣每日一题:993.二叉树的堂兄弟节点 深度优先算法

力扣每日一题:993.二叉树的堂兄弟节点 深度优先算法

993.二叉树的堂兄弟节点 难度:简单 题目: 在二叉树中,根节点位于深度 0 处,每个深度为 k 的节点的子节点位于深度 k+1 处。 如果二叉树的两个节点深度相同,但 父节点不同 ,则它们是一对堂兄弟节点。 我们给出了具有唯一值的二叉树的根节点 root ,以及树中两个不同节点的值 x 和 y 。 只有与值 x 和 y 对应的节点是堂兄弟节点时,才返回 true 。否则,返回 false。 示例: 示例 1: 输入:root = [1,2,3,4], x = 4, y = 3 输出:false

By Ne0inhk
1239.串联字符串的最大长度 关于字符串的回溯算法!

1239.串联字符串的最大长度 关于字符串的回溯算法!

题目: 给定一个字符串数组 arr,字符串 s 是将 arr 某一子序列字符串连接所得的字符串, 如果 s 中的每一个字符都只出现过一次,那么它就是一个可行解。 请返回所有可行解 s 中最长长度。 提示: 1 <= arr.length <= 16 1 <= arr[i].length <= 26 arr[i] 中只含有小写英文字母 示例: 示例 1: 输入:arr = ["un","iq","ue"] 输出:4 解释:所有可能的串联组合是

By Ne0inhk