私人大模型知识库来了,开源免费!

你是否也有这样的桌面?为了方便找材料,全部放到了桌面,最后结果就是“用起一时爽,找起火葬场”

你是否也是盘即个人电脑磁使再怎么不够用,也舍不得删除几年前做的运维方案、架构方案、设计方案文档?最后即使文档都保存了,存云盘了,到用的时候依旧发现找不到,找的也不是想要的。
你需要的是通过大模型管理你的文件/信息库!
|大模型知识库is all you need

现在不用再担心了找不到材料文档了,GitHub开源了一款可离线,支持检索增强生成(RAG)大模型的知识库项目。虽然开源时间不长,但是势头很猛,已经斩获25K Star。具备以下特点:
|
总结下重点就是:
支持中文,可私有化部署,免费商用!
支持中文,可私有化部署,免费商用!
支持中文,可私有化部署,免费商用!
重要的事情说三遍
项目名称:Langchain-Chatchat项目地址:https://github.com/chatchat-space/Langchain-Chatchat

📺 原理介绍视频(点击可看视频)

从文档处理角度来看,实现流程如下:

技术路线``Langchain 应用` `基础React形式的Agent实现,包括调用计算器等` `Langchain 自带的Agent实现和调用` `智能调用不同的数据库和联网知识` `本地数据接入` `搜索引擎接入` `Agent 实现` `LLM 模型接入` `支持通过调用 FastChat api 调用 llm` `支持 ChatGLM API 等 LLM API 的接入` `支持 Langchain 框架支持的LLM API 接入` `Embedding 模型接入` `支持调用 HuggingFace 中各开源 Emebdding 模型` `支持 OpenAI Embedding API 等 Embedding API 的接入` `支持 智谱AI、百度千帆、千问、MiniMax 等在线 Embedding API 的接入` `基于 FastAPI 的 API 方式调用` `Web UI` `基于 Streamlit 的 Web UI
| 大模型知识库来袭 3种部署方式
Docker 部署
一行代码搞定,但是建议网速不好的同学不要尝试
docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.7
常规模式本地部署方案
1. 环境配置
# 首先,确信你的机器安装了 Python 3.8 - 3.10 版本``$ python --version``Python 3.8.13`` ``# 如果低于这个版本,可使用conda安装环境``$ conda create -p /your_path/env_name python=3.8`` ``# 激活环境``$ source activate /your_path/env_name`` ``# 或,conda安装,不指定路径, 注意以下,都将/your_path/env_name替换为env_name``$ conda create -n env_name python=3.8``$ conda activate env_name # Activate the environment`` ``# 更新py库``$ pip3 install --upgrade pip`` ``# 关闭环境``$ source deactivate /your_path/env_name`` ``# 删除环境``$ conda env remove -p /your_path/env_name
接着,开始安装项目的依赖
# 拉取仓库``$ git clone --recursive https://github.com/chatchat-space/Langchain-Chatchat.git`` ``# 进入目录``$ cd Langchain-Chatchat`` ``# 安装全部依赖``$ pip install -r requirements.txt`` ``# 默认依赖包括基本运行环境(FAISS向量库)。以下是可选依赖:``- 如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。``- 如果要开启 OCR GPU 加速,请安装 rapidocr_paddle[gpu]``- 如果要使用在线 API 模型,请安装对用的 SDK``
此外,为方便用户 API 与 webui 分离运行,可单独根据运行需求安装依赖包。
- 如果只需运行 API,可执行:
$ pip install -r requirements_api.txt`` ``# 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。
- 如果只需运行 WebUI,可执行:
$ pip install -r requirements_webui.txt
2. 模型下载
如需在本地或离线环境下运行本项目,需要首先将项目所需的模型下载至本地,通常开源 LLM 与 Embedding 模型可以从 HuggingFace 下载。
以本项目中默认使用的 LLM 模型 THUDM/ChatGLM3-6B 与 Embedding 模型 BAAI/bge-large-zh 为例:
下载模型需要先安装 Git LFS ,然后运行
$ git lfs install``$ git clone https://huggingface.co/THUDM/chatglm3-6b``$ git clone https://huggingface.co/BAAI/bge-large-zh
3. 初始化知识库和配置文件
按照下列方式初始化自己的知识库和简单的复制配置文件
$ python copy_config_example.py``$ python init_database.py --recreate-vs
4. 一键启动
按照以下命令启动项目
$ python startup.py -a
最轻模式本地部署方案
该模式的配置方式与常规模式相同,但无需安装 torch 等重依赖,通过在线API实现 LLM 和 Ebeddings 相关功能,适合没有显卡的电脑使用。
$ pip install -r requirements_lite.txt``$ python startup.py -a --lite
Demo示例
- Web UI 对话界面:

- Web UI 知识库管理页面:

。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: (👆👆👆安全链接,放心点击)
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)

👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。


👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)


👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: (👆👆👆安全链接,放心点击)
最后,感谢每一个认真阅读我文章的人,礼尚往来总是要有的,下面资料虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:
