storm分布式流计算引擎

storm分布式流计算引擎
  • 场景

伴随着信息科技日新月异的发展,信息呈现出爆发式的膨胀,人们获取信息的途径也更加多样、更加便捷,同时对于信息的时效性要求也越来越高。举个搜索场景中的例子,当一个卖家发布了一条宝贝信息时,他希望的当然是这个宝贝马上就可以被卖家搜索出来、点击、购买啦,相反,如果这个宝贝要等到第二天或者更久才可以被搜出来,估计这个大哥就要骂娘了。再举一个推荐的例子,如果用户昨天在淘宝上买了一双袜子,今天想买一副泳镜去游泳,但是却发现系统在不遗余力地给他推荐袜子、鞋子,根本对他今天寻找泳镜的行为视而不见,估计这哥们心里就会想推荐你妹呀。其实稍微了解点背景知识的码农们都知道,这是因为后台系统做的是每天一次的全量处理,而且大多是在夜深人静之时做的,那么你今天白天做的事情当然要明天才能反映出来啦。

  • 实现一个实时计算系统

全量数据处理使用的大多是鼎鼎大名的hadoop或者hive,作为一个批处理系统,hadoop以其吞吐量大、自动容错等优点,在海量数据处理上得到了广泛的使用。但是,hadoop不擅长实时计算,因为它天然就是为批处理而生的,这也是业界一致的共识。否则最近这两年也不会有s4,storm,puma这些实时计算系统如雨后春笋般冒出来啦。先抛开s4,storm,puma这些系统不谈,我们首先来看一下,如果让我们自己设计一个实时计算系统,我们要解决哪些问题。

  1. 低延迟。都说了是实时计算系统了,延迟是一定要低的。
  2. 高性能。性能不高就是浪费机器,浪费机器是要受批评的哦。
  3. 分布式。系统都是为应用场景而生的,如果你的应用场景、你的数据和计算单机就能搞定,那么不用考虑这些复杂的问题了。我们所说的是单机搞不定的情况。
  4. 可扩展。伴随着业务的发展,我们的数据量、计算量可能会越来越大,所以希望这个系统是可扩展的。
  5. 容错。这是分布式系统中通用问题。一个节点挂了不能影响我的应用。

好,如果仅仅需要解决这5个问题,可能会有无数种方案,而且各有千秋,随便举一种方案,使用消息队列+分布在各个机器上的工作进程就ok啦。我们再继续往下看。

  1. 容易在上面开发应用程序。亲,你设计的系统需要应用程序开发人员考虑各个处理组件的分布、消息的传递吗?如果是,那有点麻烦啊,开发人员可能会用不好,也不会想去用。
  2. 消息不丢失。用户发布的一个宝贝消息不能在实时处理的时候给丢了,对吧?更严格一点,如果是一个精确数据统计的应用,那么它处理的消息要不多不少才行。这个要求有点高哦。
  3. 消息严格有序。有些消息之间是有强相关性的,比如同一个宝贝的更新和删除操作消息,如果处理时搞乱顺序完全是不一样的效果了。

不知道大家对这些问题是否都有了自己的答案,下面让我们带着这些问题,一起来看一看storm的解决方案吧。

  • Storm是什么

如果只用一句话来描述storm的话,可能会是这样:分布式实时计算系统。按照storm作者的说法,storm对于实时计算的意义类似于hadoop对于批处理的意义。我们都知道,根据google mapreduce来实现的hadoop为我们提供了map, reduce原语,使我们的批处理程序变得非常地简单和优美。同样,storm也为实时计算提供了一些简单优美的原语。我们会在第三节中详细介绍。

我们来看一下storm的适用场景。

  1. 流数据处理。Storm可以用来处理源源不断流进来的消息,处理之后将结果写入到某个存储中去。
  2. 分布式rpc。由于storm的处理组件是分布式的,而且处理延迟极低,所以可以作为一个通用的分布式rpc框架来使用。当然,其实我们的搜索引擎本身也是一个分布式rpc系统。

说了半天,好像都是很玄乎的东西,下面我们开始具体讲解storm的基本概念和它内部的一些实现原理吧。

  • Storm的基本概念

首先我们通过一个 storm 和hadoop的对比来了解storm中的基本概念。

HadoopStorm
系统角色JobTrackerNimbus
TaskTrackerSupervisor
ChildWorker
应用名称JobTopology
组件接口Mapper/ReducerSpout/Bolt

表3-1

接下来我们再来具体看一下这些概念。

  1. Nimbus:负责资源分配和任务调度。
  2. Supervisor:负责接受nimbus分配的任务,启动和停止属于自己管理的worker进程。
  3. Worker:运行具体处理组件逻辑的进程。
  4. Task:worker中每一个spout/bolt的线程称为一个task. 在storm0.8之后,task不再与物理线程对应,同一个spout/bolt的task可能会共享一个物理线程,该线程称为executor。

下面这个图描述了以上几个角色之间的关系。

图3-1

  1. Topology:storm中运行的一个实时应用程序,因为各个组件间的消息流动形成逻辑上的一个拓扑结构。
  2. Spout:在一个topology中产生源数据流的组件。通常情况下spout会从外部数据源中读取数据,然后转换为topology内部的源数据。Spout是一个主动的角色,其接口中有个nextTuple()函数,storm框架会不停地调用此函数,用户只要在其中生成源数据即可。
  3. Bolt:在一个topology中接受数据然后执行处理的组件。Bolt可以执行过滤、函数操作、合并、写数据库等任何操作。Bolt是一个被动的角色,其接口中有个execute(Tuple input)函数,在接受到消息后会调用此函数,用户可以在其中执行自己想要的操作。
  4. Tuple:一次消息传递的基本单元。本来应该是一个key-value的map,但是由于各个组件间传递的tuple的字段名称已经事先定义好,所以tuple中只要按序填入各个value就行了,所以就是一个value list.
  5. Stream:源源不断传递的tuple就组成了stream。

10.  stream grouping:即消息的partition方法。Storm中提供若干种实用的grouping方式,包括shuffle, fields hash, all, global, none, direct和localOrShuffle等

相比于s4, puma等其他实时计算系统,storm最大的亮点在于其记录级容错和能够保证消息精确处理的事务功能。下面就重点来看一下这两个亮点的实现原理。

  • Storm记录级容错的基本原理

首先来看一下什么叫做记录级容错?storm允许用户在spout中发射一个新的源tuple时为其指定一个message id, 这个message id可以是任意的object对象。多个源tuple可以共用一个message id,表示这多个源 tuple对用户来说是同一个消息单元。storm中记录级容错的意思是说,storm会告知用户每一个消息单元是否在指定时间内被完全处理了。那什么叫做完全处理呢,就是该message id绑定的源tuple及由该源tuple后续生成的tuple经过了topology中每一个应该到达的bolt的处理。举个例子。在图4-1中,在spout由message 1绑定的tuple1和tuple2经过了bolt1和bolt2的处理生成两个新的tuple,并最终都流向了bolt3。当这个过程完成处理完时,称message 1被完全处理了。

图4-1

在storm的topology中有一个系统级组件,叫做acker。这个acker的任务就是追踪从spout中流出来的每一个message id绑定的若干tuple的处理路径,如果在用户设置的最大超时时间内这些tuple没有被完全处理,那么acker就会告知spout该消息处理失败了,相反则会告知spout该消息处理成功了。在刚才的描述中,我们提到了”记录tuple的处理路径”,如果曾经尝试过这么做的同学可以仔细地思考一下这件事的复杂程度。但是storm中却是使用了一种非常巧妙的方法做到了。在说明这个方法之前,我们来复习一个数学定理。

A xor A = 0.

A xor B…xor B xor A = 0,其中每一个操作数出现且仅出现两次。

storm中使用的巧妙方法就是基于这个定理。具体过程是这样的:在spout中系统会为用户指定的message id生成一个对应的64位整数,作为一个root id。root id会传递给acker及后续的bolt作为该消息单元的唯一标识。同时无论是spout还是bolt每次新生成一个tuple的时候,都会赋予该tuple一个64位的整数的id。Spout发射完某个message id对应的源tuple之后,会告知acker自己发射的root id及生成的那些源tuple的id。而bolt呢,每次接受到一个输入tuple处理完之后,也会告知acker自己处理的输入tuple的id及新生成的那些tuple的id。Acker只需要对这些id做一个简单的异或运算,就能判断出该root id对应的消息单元是否处理完成了。下面通过一个图示来说明这个过程。

图4-1 spout中绑定message 1生成了两个源tuple,id分别是0010和1011.

图4-2 bolt1处理tuple 0010时生成了一个新的tuple,id为0110.

图4-3 bolt2处理tuple 1011时生成了一个新的tuple,id为0111.

图4-4 bolt3中接收到tuple 0110和tuple 0111,没有生成新的tuple.

可能有些细心的同学会发现,容错过程存在一个可能出错的地方,那就是,如果生成的tuple id并不是完全各异的,acker可能会在消息单元完全处理完成之前就错误的计算为0。这个错误在理论上的确是存在的,但是在实际中其概率是极低极低的,完全可以忽略。

  • Storm的事务拓扑

事务拓扑(transactional topology)是storm0.7引入的特性,在最近发布的0.8版本中已经被封装为Trident,提供了更加便利和直观的接口。因为篇幅所限,在此对事务拓扑做一个简单的介绍。

事务拓扑的目的是为了满足对消息处理有着极其严格要求的场景,例如实时计算某个用户的成交笔数,要求结果完全精确,不能多也不能少。Storm的事务拓扑是完全基于它底层的spout/bolt/acker原语实现的,通过一层巧妙的封装得出一个优雅的实现。个人觉得这也是storm最大的魅力之一。

事务拓扑简单来说就是将消息分为一个个的批(batch),同一批内的消息以及批与批之间的消息可以并行处理,另一方面,用户可以设置某些bolt为committer,storm可以保证committer的finishBatch()操作是按严格不降序的顺序执行的。用户可以利用这个特性通过简单的编程技巧实现消息处理的精确。

  • Storm在淘宝

由于storm的内核是clojure编写的(不过大部分的拓展工作都是java编写的),为我们理解它的实现带来了一定的困难,好在大部分情况下storm都比较稳定,当然我们也在尽力熟悉clojure的世界。我们在使用storm时通常都是选择java语言开发应用程序。

在淘宝,storm被广泛用来进行实时日志处理,出现在实时统计、实时风控、实时推荐等场景中。一般来说,我们从类kafka的metaQ或者基于hbase的timetunnel中读取实时日志消息,经过一系列处理,最终将处理结果写入到一个分布式存储中,提供给应用程序访问。我们每天的实时消息量从几百万到几十亿不等,数据总量达到TB级。对于我们来说,storm往往会配合分布式存储服务一起使用。在我们正在进行的个性化搜索实时分析项目中,就使用了timetunnel + hbase + storm + ups的架构,每天处理几十亿的用户日志信息,从用户行为发生到完成分析延迟在秒级。

  • Storm的未来

Storm0.7系列的版本已经在各大公司得到了广泛使用,最近发布的0.8版本中引入了State,使得其从一个纯计算框架演变成了一个包含存储和计算的实时计算新利器,还有刚才提到的Trident,提供更加友好的接口,同时可定制scheduler的特性也为其针对不同的应用场景做优化提供了更便利的手段,也有人已经在基于storm的实时ql(query language)上迈出了脚本。在服务化方面,storm一直在朝着融入mesos框架的方向努力。同时,storm也在实现细节上不断地优化,使用很多优秀的开源产品,包括kryo, Disruptor, curator等等。可以想象,当storm发展到1.0版本时,一定是一款无比杰出的产品,让我们拭目以待,当然,最好还是参与到其中去吧,同学们。

Read more

大话推荐系统

大话推荐系统

摘要: 在大数据的时代,信息泛滥,如何在大量的信息中提出用户想要的,推荐系统便显得极其重要了。在电商,电影,广告方面,推荐系统得到越来越广泛的应用。 一 什么是推荐系统 个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。 二 个性化推荐系统的应用 1. 电子商务:  淘宝 1. 电影和视频网站: 优酷 1. 个性化音乐网络电台:豆瓣fm 1. 社交网络:微博 1. 个性化阅读:今日头条 1. 个性化广告:微信朋友圈广告 三 推荐系统的分类 要了解推荐系统是如何工作的,可以先回顾一下现实社会中用户面对很多选择时做决定的过程。仍然以看电影为例,一般来说,我们可

By Ne0inhk
通过微服务进行分布式应用开发

通过微服务进行分布式应用开发

微服务架构设计模式相对于整体设计模式,具有很多优点。 它不去创建一个大型的单个应用程序,而是想着要把单个的应用程序细分成一堆互相连接起来的子应用程序。每一个微服务都有类似于整体应用程序的分层架构。 通过使用微服务架构搭配一些设计模式,有几个优势可以很容易的得到实现。 可扩展性。应用程序通常会有三种类型的扩展。X维度上的扩展就是对应用程序进行平面的克隆, Y维度上的扩展就是将不同的应用程序功能进行分割, 而Z维度上的扩展就是对数据进行分区和分片。当Y维度上的扩展被应用到整体应用程序时,应用程序就会被分成许多更小的单元,各自被分配到具有微服务架构风格的业务功能。 模式: 每一个微服务都拥有自己的被隔离的实体和容器。多个实体中的相同服务可以实现服务层面的负载均衡。 可利用性:微服务被部署在不同的实例,比如相同的微服务运行在多实例中,保证整个系统的高可用。 模式:分级服务的负载平衡通过优化实现高可用,电路破坏者模式可以通过优化实现容错,而服务配置与探测可以使新服务建立通信。 可持续部署性。每个微服务之间相互独立。这就保证任何 相互独立 服务的部署速度更快,实现可持续部署。 循环处

By Ne0inhk
Git学习总结(12)——多人开发 Git 分支管理详解

Git学习总结(12)——多人开发 Git 分支管理详解

1.前言 在上一篇博客中我们主要讲解了 远程仓库,相信大家对远程的Git仓库有一定的了解,嘿嘿。在这一篇博客中我们来在大家讲解一下Git 分支管理,这可以说是Git的又一大特点。下面我们就来学习一下Git分支管理吧。 我们先来说一个简单的案例吧,你们团队中有多个人再开发一下项目,一同事再开发一个新的功能,需要一周时间完成,他写了其中的30%还没有写完,如果他提 交了这个版本,那么团队中的其它人就不能继续开发了。但是等到他全部写完再全部提交,大家又看不到他的开发进度,也不能继续干活,这如何是好呢? 对于上面的这个问题,我们就可以用分支管理的办法来解决,一同事开发新功能他可以创建一个属于他自己的分支,其它同事暂时看不到,继续在开发分支(一般都 有多个分支)上干活,他在自己的分支上干活,等他全部开发完成,再一次性的合并到开发分支上,这样我们既可知道他的开发进度,又不影响大家干活,是不是很 方便呢? 大家可能会说了,你Git的分支功能人家SVN也有啊,也没什么特殊的嘛。但我想说你那个创建和切换速度怎么样呢?嘿嘿,我想说谁用谁知道啊!但Git呢,无论你创建还是切换或者删除都很快哦! 分

By Ne0inhk
玩转设计模式(观察者模式)

玩转设计模式(观察者模式)

目录 玩转设计模式(观察者模式) 要写好代码,设计模式(Design Pattern)是必不可少的基本功,设计模式是对面向对象设计(Object Oriented Design)中反复出现的问题的一种有效解决方案,本次从比较常见的观察者模式入手(Observer Pattern)。在观察者模式中,存在多个观察者对象依赖(Observer)都依赖同一个目标对象(Subject),当被依赖的目标对象发生变化的时候,会通知所有依赖它的观察者对象,然后各个观察者对象根据自己的需要做出对应的响应。 其主要优点如下: * 降低了目标与观察者之间的耦合关系 * 建立了目标与观察者之间的变化触发机制 其主要缺点如下: * 目标与观察者之间的依赖关系并没有完全解除,而且有可能出现循环引用 * 当观察者对象很多时,通知的发布会花费很多时间,影响程序的效率 比较抽象不好理解?我们来参考日常功能设计中几个常见的场景。 观察者模式在天气预报场景的应用 关注天气预报是我们日常生活中一个比较重要的习惯,不同的角色对于天气的变化由有着不同的反应。例如明天特大暴雨,气象

By Ne0inhk