AI

您将深入了解人工智能(AI)的核心技术与应用,包括机器学习、深度学习、自然语言处理、计算机视觉等热门领域。我们提供最新的AI教程、技术文章、行业案例与实践指南,帮助您掌握AI技术,提升编程与数据分析能力。无论您是AI初学者还是专业开发者,都可以在这里找到丰富的学习资源,助力您的职业发展与技术创新。关注我们的AI板块,了解AI最新趋势,抢占未来科技先机!

🚀Zeek.ai一款基于 Electron 和 Vite 打造的跨平台(支持 Windows、macOS 和 Linux) AI 浏览器

大前端

🚀Zeek.ai一款基于 Electron 和 Vite 打造的跨平台(支持 Windows、macOS 和 Linux) AI 浏览器

是一款基于 Electron 和 Vite 打造的跨平台(支持 Windows、macOS 和 Linux) AI 浏览器。 集成了 SearXNG AI 搜索、开发工具集合、 市面上最流行的 AI 工具门户,以及代码编写和桌面快捷工具等功能, 通过模块化的 Monorepo 架构,提供轻量级、可扩展且高效的桌面体验, 助力 AI 驱动的日常工作流程。

By Ne0inhk
决策树算法介绍:原理与案例实现

算法

决策树算法介绍:原理与案例实现

决策树算法介绍:原理与案例实现 决策树算法介绍:原理与案例实现 一、决策树算法概述 决策树是一种基本的分类与回归方法,它基于树形结构进行决策。决策树的每一个节点都表示一个对象属性的测试,每个分支代表该属性测试的一个输出,每个叶节点则代表一个类别或值。决策树学习通常包括三个步骤:特征选择、决策树的生成和决策树的剪枝。 二、决策树算法原理 1. 特征选择 特征选择是决策树学习的核心。它决定了在树的每个节点上选择哪个属性进行测试。常用的特征选择准则有信息增益、增益比和基尼不纯度。 * 信息增益:表示划分数据集前后信息的不确定性减少的程度。选择信息增益最大的属性作为当前节点的测试属性。 * 增益比:在信息增益的基础上考虑了属性的取值数量,避免了对取值数量较多的属性的偏好。 * 基尼不纯度:在CART(分类与回归树)算法中,使用基尼不纯度作为特征选择的准则。基尼不纯度越小,表示纯度越高。 2. 决策树的生成 根据选择的特征选择准则,从根节点开始,递归地为每个节点选择最优的划分属性,并根据该属性的不同取值建立子节点。直到满足停止条件(如所有样本属于同一类,

By Ne0inhk
他给女朋友做了个树莓派复古相机,算法代码可自己编写,成本不到700元

算法

他给女朋友做了个树莓派复古相机,算法代码可自己编写,成本不到700元

手机拍照不够爽,带个单反又太重? 试试做个树莓派复古相机,还能自己编写处理算法的那种—— 成本不到700元。 没错,颜值很高,拍出来的照片也能打: 你也可以快速上手做一个。 如何制作一个树莓派复古相机 目前,这部相机的代码、硬件清单、STL文件(用于3D打印)和电路图都已经开源。 首先是硬件部分。 这部复古相机的硬件清单如下: 树莓派Zero W(搭配microSD卡)、树莓派高清镜头模组、16mm 1000万像素长焦镜头、2.2英寸TFT显示屏、TP4056微型USB电池充电器、MT3608、2000mAh锂电池、电源开关、快门键、杜邦线、3D打印相机外壳、黑色皮革贴片(选用) 至于3D打印的相机外壳,作者已经开源了所需的STL文件,可以直接上手打印。 材料齐全后,就可以迅速上手制作了~ 内部的电路图,是这个样子的: 具体引脚如下: 搭建好后,整体电路长这样: 再加上3D外壳(喷了银色的漆)和镜头,一部简易的树莓派复古相机就做好了。 至于软件部分,

By Ne0inhk
LibreChat 集成 Stripe 支付的奶妈级教程

大模型

LibreChat 集成 Stripe 支付的奶妈级教程

我们假设你已经熟悉基本的 React 和 Node.js 开发,并且正在使用 LibreChat 的默认技术栈(React 前端、Node.js 后端、Vite 构建工具,可能还有 Electron 桌面应用)。教程会特别考虑 Electron 环境下的适配问题(例如 macOS 中文路径或路由错误)。“奶妈级”带你从零开始实现支付功能(包括一次性支付和添加高级会员订阅) 教程目标 * 在 LibreChat 中添加支付页面,支持用户通过信用卡付款。 * 实现 Stripe 的一次性支付功能。 * (可选)扩展到订阅功能,管理高级会员状态。 * 解决 Electron 环境下的常见问题(如路由和路径解析)。 * 生成可公开推送的 Markdown 教程,方便社区参考。 前提条件 在开始之前,请确保你已准备好以下内容:

By Ne0inhk
机器学习第三篇:详解朴素贝叶斯算法

算法

机器学习第三篇:详解朴素贝叶斯算法

一、统计知识 01|随机事件: 1、概念 随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件)。随机事件通常用大写英文字母A、B、C等表示。随机试验中的每一个可能出现的试验结果称为这个试验的一个样本点,记作ωi。全体样本点组成的集合称为这个试验的样本空间,记作Ω.即Ω={ω1,ω2,…,ωn,…} 随机事件中的事件形式可能由各种形式,比如{"正面","反面"},{"优","良","差"}。 2、条件概率 P(A|B)=P(AB)/P(B)表示在事件B发生的情况下事件A发生的概率。 3、一些性质

By Ne0inhk
超快速,使用ChatGPT编写回归和分类算法

算法

超快速,使用ChatGPT编写回归和分类算法

本文将使用一些 ChatGPT 提示,这些提示对于数据科学家在工作时非常重要。 微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩 以下是一些示例ChatGPT 提示的列表以及数据科学家的响应。 ChatGPT 提示 为决策树回归算法生成 python 代码。 下面是使用scikit-learn在 Python 中进行决策树回归的示例代码: import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Generate random data rng = np.random.default_rng() x = 5 * rng.random(100) y = np.sin(x) + 0.

By Ne0inhk
用于数据挖掘的分类算法有哪些,各有何优劣?

算法

用于数据挖掘的分类算法有哪些,各有何优劣?

作者:Jason Gu 链接:https://www.zhihu.com/question/24169940/answer/26952728 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 训练集有多大? 如果你的训练集很小,高偏差/低方差的分类器(如朴素贝叶斯)比低偏差/高方差的分类器(如K近邻或Logistic回归)更有优势,因为后者容易过拟合。但是随着训练集的增大,高偏差的分类器并不能训练出非常准确的模型,所以低偏差/高方差的分类器会胜出(它们有更小的渐近误差)。你也可以从生成模型与鉴别模型的区别来考虑它们。 某些分类器的优势 **朴素贝叶斯(Naive Bayes, NB)** 超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型(如Logistic回归)收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。如果你想做类似半监督学习,或者是既要模型简单又要性能好,NB值得尝试。

By Ne0inhk
算法学习二,红黑树查找算法

算法

算法学习二,红黑树查找算法

在红黑树的实现中,处理删除操作是一个复杂的过程,特别是当涉及到删除黑色节点时。红黑树的删除操作需要保持树的平衡和性质(即每条路径上的黑色节点数量相同)。以下是对红黑树删除操作的详细解释,特别是针对删除黑色节点的情况。 删除操作概述 删除节点:首先找到并删除目标节点。 重新平衡:如果删除的节点是红色,则不需要调整树的结构。但如果删除的是黑色节点,则需要进行重新平衡,以保持红黑树的性质。 重新平衡步骤 当删除一个黑色节点时,可能会导致树失去平衡,因为删除黑色节点会减少一条路径上的黑色节点数量。红黑树的重新平衡操作包括以下几种情况: 兄弟节点是红色: 将父节点和兄弟节点颜色互换。 对父节点进行左旋或右旋。 更新旋转后的新兄弟节点为黑色。 兄弟节点是黑色,且两个子节点都是黑色: 将兄弟节点设为红色。 如果父节点也是黑色,则继续向上调整。 如果父节点是红色,则将父节点设为黑色并结束调整。 兄弟节点是黑色,且有一个红色的左(右)子节点: 将父节点和兄弟节点颜色互换。 对兄弟节点进行右旋或左旋。 将旋转后的新兄弟节点设为黑色,并对新兄弟节点的另一个子节点进行左旋或右旋。

By Ne0inhk
程序算法与人生选择

程序算法与人生选择

你的文章非常深刻地探讨了学习编程和技术的哲学问题,并用Dijkstra最短路径算法来解释了如何在有限的时间和资源中做出最佳决策。以下是一些你提到的观点的进一步扩展和总结: 1. **Trade-Off(交易)**: - 在编程和技术的学习过程中,总是会有权衡利弊的情况。例如,学习一门语言可能会牺牲对另一门语言的理解,但也会带来更多的就业机会或项目选择。 - 这种交易不是坏事,而是技术进步和职业生涯发展的必经之路。 2. **算法的选择**: - 不同的算法可能适用于不同的场景。Dijkstra最短路径算法是一种经典的应用于图论中的贪心算法,但它并不适合所有问题。例如,如果问题有多个目标或需要考虑多方面的因素,可能就需要更复杂的算法。 - 学习和理解不同算法的目的,可以帮助你根据具体问题选择合适的解决方案。 3. **持续学习**: - 技术领域日新月异,持续学习是非常重要的。通过不断的学习和实践,可以不断提高自己的技能和知识水平。 - 职场中很多人会选择在职业生涯早期掌握多种技术和工具,以增加自己的竞争力。 4. **目标与路径**:

By Ne0inhk
算法学习一,基础查找算法和排序算法

算法

算法学习一,基础查找算法和排序算法

你提供的代码示例展示了两种常见的哈希表实现方法:拉链法(Separate Chaining)和线性探测法(Linear Probing)。每种方法都有其优缺点,适用于不同的场景。 拉链法(Separate Chaining) 拉链法通过将每个散列值对应的位置存储一个链表来解决冲突。这种方法的优点是简单且实现灵活,可以使用任何数据结构来存储冲突的键值对。以下是拉链法的主要特点: 优点: 简单且实现灵活。 不会像线性探测那样导致同类哈希的聚集。 缺点: 需要额外的空间来存储链表。 代码示例(使用拉链法): namespace StructScript { /// <summary> /// 哈希表的查找算法主要分为两步: /// 第一步是用哈希函数将键转换为数组的一个索引,理想情况下不同的键都能转换为不同的索引值,但是实际上会有多个键哈希到到相同索引值上。 /// 因此,第二步就是处理碰撞冲突的过程。这里有两种处理碰撞冲突的方法:separate chaining(拉链法)和linear probing(线性探测法)。 /// 拉

By Ne0inhk
他给女朋友做了个树莓派复古相机,算法代码可自己编写,成本不到700元

他给女朋友做了个树莓派复古相机,算法代码可自己编写,成本不到700元

来源:量子位萧箫 发自 凹非寺 阅读文本大概需要 5 分钟 本文经AI新媒体量子位(ID:QbitAI)授权转载,转载请联系出处 萧箫 发自 凹非寺 手机拍照不够爽,带个单反又太重? 试试做个树莓派复古相机,还能自己编写处理算法的那种—— 成本不到700元。 没错,颜值很高,拍出来的照片也能打: 你也可以快速上手做一个。 如何制作一个树莓派复古相机 目前,这部相机的代码、硬件清单、STL文件(用于3D打印)和电路图都已经开源。 首先是硬件部分。 这部复古相机的硬件清单如下: 树莓派Zero W(搭配microSD卡)、树莓派高清镜头模组、16mm 1000万像素长焦镜头、2.2英寸TFT显示屏、TP4056微型USB电池充电器、MT3608、2000mAh锂电池、电源开关、快门键、杜邦线、3D打印相机外壳、黑色皮革贴片(选用)

By Ne0inhk