大前端

🚀Zeek.ai一款基于 Electron 和 Vite 打造的跨平台(支持 Windows、macOS 和 Linux) AI 浏览器

大前端

🚀Zeek.ai一款基于 Electron 和 Vite 打造的跨平台(支持 Windows、macOS 和 Linux) AI 浏览器

是一款基于 Electron 和 Vite 打造的跨平台(支持 Windows、macOS 和 Linux) AI 浏览器。 集成了 SearXNG AI 搜索、开发工具集合、 市面上最流行的 AI 工具门户,以及代码编写和桌面快捷工具等功能, 通过模块化的 Monorepo 架构,提供轻量级、可扩展且高效的桌面体验, 助力 AI 驱动的日常工作流程。

By Ne0inhk
超快速,使用ChatGPT编写回归和分类算法

算法

超快速,使用ChatGPT编写回归和分类算法

本文将使用一些 ChatGPT 提示,这些提示对于数据科学家在工作时非常重要。 微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩 以下是一些示例ChatGPT 提示的列表以及数据科学家的响应。 ChatGPT 提示 为决策树回归算法生成 python 代码。 下面是使用scikit-learn在 Python 中进行决策树回归的示例代码: import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # Generate random data rng = np.random.default_rng() x = 5 * rng.random(100) y = np.sin(x) + 0.

By Ne0inhk
机器学习第三篇:详解朴素贝叶斯算法

算法

机器学习第三篇:详解朴素贝叶斯算法

简说Python推荐来源:俊红的数据分析之路 作者:张俊红 我的2020总结,戳图片,留言抽大奖 大家好,我是老表~ 一、统计知识 01|随机事件: 1、概念 随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件)。随机事件通常用大写英文字母A、B、C等表示。随机试验中的每一个可能出现的试验结果称为这个试验的一个样本点,记作ωi。全体样本点组成的集合称为这个试验的样本空间,记作Ω.即Ω={ω1,ω2,…,ωn,…} 随机事件中的事件形式可能由各种形式,比如{"正面","反面"},{"优","良","差"}。 2、条件概率 P(

By Ne0inhk
程序算法与人生选择

程序算法与人生选择

你的文章非常深刻地探讨了学习编程和技术的哲学问题,并用Dijkstra最短路径算法来解释了如何在有限的时间和资源中做出最佳决策。以下是一些你提到的观点的进一步扩展和总结: 1. **Trade-Off(交易)**: - 在编程和技术的学习过程中,总是会有权衡利弊的情况。例如,学习一门语言可能会牺牲对另一门语言的理解,但也会带来更多的就业机会或项目选择。 - 这种交易不是坏事,而是技术进步和职业生涯发展的必经之路。 2. **算法的选择**: - 不同的算法可能适用于不同的场景。Dijkstra最短路径算法是一种经典的应用于图论中的贪心算法,但它并不适合所有问题。例如,如果问题有多个目标或需要考虑多方面的因素,可能就需要更复杂的算法。 - 学习和理解不同算法的目的,可以帮助你根据具体问题选择合适的解决方案。 3. **持续学习**: - 技术领域日新月异,持续学习是非常重要的。通过不断的学习和实践,可以不断提高自己的技能和知识水平。 - 职场中很多人会选择在职业生涯早期掌握多种技术和工具,以增加自己的竞争力。 4. **目标与路径**:

By Ne0inhk
机器学习第二篇:详解KNN算法

python

机器学习第二篇:详解KNN算法

简说Python推荐来源:俊红的数据分析之路 作者:张俊红 我的2020总结,戳图片,留言抽大奖 大家好,我是老表~ 本篇介绍机器学习众多算法里面最基础也是最“懒惰”的算法——KNN(k-nearest neighbor)。你知道为什么是最懒的吗? 01|算法简介: KNN是英文k-nearest neighbor的缩写,表示K个最接近的点。该算法常用来解决分类问题,具体的算法原理就是先找到与待分类值A距离最近的K个值,然后判断这K个值中大部分都属于哪一类,那么待分类值A就属于哪一类。 这其实和我们生活中对人的评价方式一致,你想知道一个人是什么样的人,你只需要找到跟他关系最近(好)的K个人,然后看这K个人都是什么人,就可以判断出他是什么样的人了。 02|算法三要素: 通过该算法的原理,我们可以把该算法分解为3部分,第一部分就是要决定K值,也就是要找他周围的几个值;第二部分是距离的计算,即找出距离他最近的K个值;第三部分是分类规则的确定,就是以哪种标准去评判他是哪一类。 1、K值的选取 K值的选取将会对KNN算法的结果产生重大的影响,下面通过一个简单

By Ne0inhk
python毕设基于协同过滤算法的个性化音乐推荐系统o94q9程序+论文

python

python毕设基于协同过滤算法的个性化音乐推荐系统o94q9程序+论文

本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。 系统程序文件列表 开题报告内容 研究背景 随着互联网技术的飞速发展,音乐产业迎来了数字化和个性化的双重变革。音乐平台上的音乐资源日益丰富,用户面临的选择也随之增多。然而,如何在海量音乐中快速找到符合个人口味的歌曲,成为了用户的一大难题。传统的音乐推荐方式,如热门榜单、新歌推荐等,虽然在一定程度上满足了用户的听歌需求,但缺乏个性化和精准性。因此,开发一个基于协同过滤算法的个性化音乐推荐系统,利用用户的听歌历史、偏好等信息,为用户提供量身定制的音乐推荐,成为提升用户体验、增强用户黏性的关键。 意义 基于协同过滤算法的个性化音乐推荐系统的开发,对于推动音乐产业的智能化、提升用户体验具有重要意义。该系统能够深入挖掘用户的听歌偏好,根据用户的个人特点和历史行为,为用户推荐符合其口味的音乐,从而满足用户的个性化需求。同时,该系统还能提高音乐平台的用户活跃度和留存率,促进音乐作品的传播和推广,为音乐产业的可持续发展提供有力支持。此外,该系统的成功开发还能为其他领域的个性化推荐系统提供

By Ne0inhk
机器学习第二篇:详解KNN算法

大前端

机器学习第二篇:详解KNN算法

↑↑↑关注后"星标"简说Python 人人都可以简单入门Python、爬虫、数据分析 简说Python推荐来源:俊红的数据分析之路 作者:张俊红 我的2020总结,戳图片,留言抽大奖 大家好,我是老表~ 本篇介绍机器学习众多算法里面最基础也是最“懒惰”的算法——KNN(k-nearest neighbor)。你知道为什么是最懒的吗? 01|算法简介: KNN是英文k-nearest neighbor的缩写,表示K个最接近的点。该算法常用来解决分类问题,具体的算法原理就是先找到与待分类值A距离最近的K个值,然后判断这K个值中大部分都属于哪一类,那么待分类值A就属于哪一类。 这其实和我们生活中对人的评价方式一致,你想知道一个人是什么样的人,你只需要找到跟他关系最近(好)的K个人,然后看这K个人都是什么人,就可以判断出他是什么样的人了。 02|算法三要素: 通过该算法的原理,我们可以把该算法分解为3部分,第一部分就是要决定K值,也就是要找他周围的几个值;第二部分是距离的计算,即找出距离他最近的K个值;第三部分是分类规则的确定,就是以哪种标准去评判他是哪一类。

By Ne0inhk
机器学习第四篇:详解决策树算法

算法

机器学习第四篇:详解决策树算法

↑↑↑关注后"星标"简说Python 人人都可以简单入门Python、爬虫、数据分析 简说Python推荐来源:俊红的数据分析之路 作者:张俊红 我的2020总结,戳图片,留言抽大奖 大家好,我是老表~ 01|背景: 我们在日常生活中经常会遇到一些选择需要去做一些选择,比如我们在找工作的时候每个人都希望能找到一个好的工作,但是公司那么多,工作种类那么多,什么样的工作才能算是好工作,这个时候就需要我们对众多的工作去做一个判断。 最常用的一种方法就是制定几个可以衡量工作好坏的指标,比如公司所处的行业是什么、应聘的岗位是什么、投资人是谁、薪酬待遇怎么样等等。评判一个工作好坏的指标有很多个,但是每一个指标对工作好坏这一结果的决策能力是不一样的,为了更好的对每一个指标的决策能力做出判断,我们引入一个可以量化信息决策能力的概念,这个概念就是信息熵。 信息熵是用来度量(量化)信息的,一条信息的信息量与其不确定性有着直接的联系,当我们需要了解清楚一件不确定的事情的时候,我们就需要了解大量的信息。 02|概念: 决策树(Decision Tree)是在已知各种情况发生概率的基础

By Ne0inhk
机器学习第四篇:详解决策树算法

算法

机器学习第四篇:详解决策树算法

简说Python推荐来源:俊红的数据分析之路 作者:张俊红 我的2020总结,戳图片,留言抽大奖 大家好,我是老表~ 01|背景: 我们在日常生活中经常会遇到一些选择需要去做一些选择,比如我们在找工作的时候每个人都希望能找到一个好的工作,但是公司那么多,工作种类那么多,什么样的工作才能算是好工作,这个时候就需要我们对众多的工作去做一个判断。 最常用的一种方法就是制定几个可以衡量工作好坏的指标,比如公司所处的行业是什么、应聘的岗位是什么、投资人是谁、薪酬待遇怎么样等等。评判一个工作好坏的指标有很多个,但是每一个指标对工作好坏这一结果的决策能力是不一样的,为了更好的对每一个指标的决策能力做出判断,我们引入一个可以量化信息决策能力的概念,这个概念就是信息熵。 信息熵是用来度量(量化)信息的,一条信息的信息量与其不确定性有着直接的联系,当我们需要了解清楚一件不确定的事情的时候,我们就需要了解大量的信息。 02|概念: 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可

By Ne0inhk
springboot毕设 协同过滤算法的就业推荐系统 程序+论文

算法

springboot毕设 协同过滤算法的就业推荐系统 程序+论文

本系统(程序+源码)带文档lw万字以上 文末可获取一份本项目的java源码和数据库参考。 系统程序文件列表 开题报告内容 研究背景 随着信息技术的飞速发展和互联网的广泛普及,就业市场逐渐呈现出信息爆炸的趋势。传统的就业推荐方式,如招聘会、报纸招聘广告等,已难以满足当前求职者和招聘方的需求。一方面,求职者面临着海量招聘信息的筛选难题,难以快速找到符合自己期望的岗位;另一方面,企业也面临着如何从众多求职者中挑选出最合适的人才的挑战。协同过滤算法作为一种有效的个性化推荐技术,在电商、视频、音乐等领域取得了显著成效。因此,将协同过滤算法应用于就业推荐系统中,旨在通过挖掘用户的历史行为数据,为求职者提供个性化的岗位推荐,同时帮助企业快速锁定潜在人才,具有重要的研究价值和现实意义。 研究意义 本研究的意义在于,通过构建基于协同过滤算法的就业推荐系统,不仅能够提高求职者的求职效率和满意度,还能够优化企业的招聘流程,降低招聘成本。此外,该系统还能在一定程度上缓解就业市场的信息不对称问题,促进人力资源的合理配置。对于求职者而言,个性化的岗位推荐能够减少其筛选信息的时间成本,提高求职成功率

By Ne0inhk
新闻热度算法代码(含Python源代码)

算法

新闻热度算法代码(含Python源代码)

新闻热度算法代码(含Python源代码) * * * 新闻热度算法 新闻热度算法是一种用于衡量新闻报道受关注程度的方法,它通过综合考虑新闻的各种属性(如发布时间、转发量、评论数、点赞数等),以及用户行为(如点击、阅读时长等),来量化新闻的热度值。这种算法对于新闻媒体、内容推荐系统和广告商等来说具有重要意义,因为它能帮助他们了解哪些新闻更受读者欢迎,从而优化内容生产和推广策略。 新闻热度算法步骤 新闻热度算法的实现通常包含以下几个步骤: 1. 数据收集 收集新闻相关的各种数据,包括发布时间、标题、内容、来源、转发量、评论数、点赞数等。这些数据可以从新闻网站、社交媒体平台等渠道获取。 2. 数据预处理 对收集到的数据进行清洗和标准化处理,去除重复、无效或异常数据,确保数据的质量和准确性。数据清洗过程中,可能会使用到正则表达式、自然语言处理等技术来提取关键信息,并对数据进行格式化和归一化处理。 3. 特征提取 从预处理后的数据中提取出能够反映新闻热度的关键特征,如发布时间、用户互动行为等。发布时间可以作为一个重要的时间衰减因子,因为新闻的热度往往会随着时

By Ne0inhk
机器学习第三篇:详解朴素贝叶斯算法

算法

机器学习第三篇:详解朴素贝叶斯算法

↑↑↑关注后"星标"简说Python 人人都可以简单入门Python、爬虫、数据分析 简说Python推荐来源:俊红的数据分析之路 作者:张俊红 我的2020总结,戳图片,留言抽大奖 大家好,我是老表~ 一、统计知识 01|随机事件: 1、概念 随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件)。随机事件通常用大写英文字母A、B、C等表示。随机试验中的每一个可能出现的试验结果称为这个试验的一个样本点,记作ωi。全体样本点组成的集合称为这个试验的样本空间,记作Ω.即Ω={ω1,ω2,…,ωn,…} 随机事件中的事件形式可能由各种形式,比如{"正面","反面"},{"优","

By Ne0inhk